Show simple item record

dc.contributor.authorKilpatrick, Kristopher N.
dc.date.accessioned2015-02-03T00:57:44Z
dc.date.available2015-02-03T00:57:44Z
dc.date.issued2014-12
dc.identifier.urihttp://hdl.handle.net/11122/4903
dc.descriptionThesis (M.S.) University of Alaska Fairbanks, 2014en_US
dc.description.abstractWe present an axiomatic development of geometric algebra. One may think of a geometric algebra as allowing one to add and multiply subspaces of a vector space. Properties of the geometric product are proven and derived products called the wedge and contraction product are introduced. Linear algebraic and geometric concepts such as linear independence and orthogonality may be expressed through the above derived products. Some examples with geometric algebra are then given.en_US
dc.description.tableofcontentsChapter 1: Preliminaries -- Chapter 2: The geometry of blades -- Chapter 3: Examples with geometric algebra -- Chapter 4: Appendix -- 4.1. Construction of a geometric algebra -- References.en_US
dc.language.isoen_USen_US
dc.titleThe geometry in geometric algebraen_US
dc.typeThesisen_US
dc.type.degreemsen_US
dc.identifier.departmentDepartment of Mathematics and Statisticsen_US
dc.contributor.chairMaxwell, David A.
dc.contributor.committeeWilliams, Gordon I.
dc.contributor.committeeRhodes, John A.


Files in this item

Thumbnail
Name:
Kilpatrick_uaf_0006N_10288.pdf
Size:
1.123Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record