• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Pelagic nitrogen cycle in an arctic lake

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Whalen.Stephen.1986.pdf
    Size:
    2.718Mb
    Format:
    PDF
    Download
    Author
    Whalen, Stephen Charles
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5023
    Abstract
    A mass balance for nitrogen was developed for the water column of Toolik Lake and the isotope tracers 15N and 14C were used to examine the phytoplankton ecology with respect to dissolved in organic nitrogen (ammonium and nitrate). The nutrient budget showed an oligotrophic ecosystem with important flux terms few and small in magnitude. Nitrogen input was primarily from inflowing rivers and was dominated by the dissolved organic fraction. Ammonium release from sediment provided the only other major source of nitrogen to the lake water. Toolik acted as a nitrogen sink, trapping 18% of the annual input. Retention was almost exclusively (98%) as dissolved organic nitrogen. Tracer experiments suggested chronic nitrogen deficiency in the phytoplankton, but indigenous populations were well-adapted for utilizing characteristically low levels of nutrient. Phytoplankton showed a high affinity for both nitrate and ammonium as well as a lack of discrimination between the two forms of inorganic nutrient. The ambient concentration was the most important factor regulating uptake, with light and temperature of secondary importance. More than 66% of the dissolved in organic nitrogen supporting phytoplankton productivity was derived from local recycling, with the remainder from sediment efflux and riverine input. Dissolved organic nitrogen from inflowing waters probably provided an additional, important source of nutrient for the phytoplankton.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2003
    Date
    1986-05
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.