• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Genetic engineering and characterization of LysR-type transcriptional regulators

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sun.Honghong.2000.pdf
    Size:
    9.355Mb
    Format:
    PDF
    Download
    Author
    Sun, Honghong
    Keyword
    Genetic engineering
    Genetic transcription
    Regulation
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5029
    Abstract
    This thesis describes research aimed at understanding the structure and function of LysR-type transcriptional regulators. I studied two LysR-type proteins. One from the archaeon Methanococcus jannaschii, MJ-LysR. The other is from Burkholderia cepacia, DgdR. The MJ-LysR is the first putative LysR-type transcriptional regulator found in archaea. It is surprising that a prokaryotic transcriptional regulator is present in archaea, whose basal transcription machinery and RNA polymerase are more closely related to those of eukaryotes. To elucidate the structure and function of M-LysR protein, the gene was subcloned and expressed in E. coli. The gene product was isolated and purified by heat treatment and size exclusion chromatography. An in vitro binding assay showed that the purified protein bound to the intergenic region between the lysR gene and its upstream gene specifically and selectively. The results also showed that the protein maintained its binding activity even at 94C̊. The DNA footprinting data demonstrated a 30 bp protected region. Thus, this protein probably regulates expression of its own structural gene and perhaps the adjacent upstream gene. DgdR protein from Burkholderia cepacia had been previously characterized. The previous study showed that 2-methylalanine, the inducer for the DgdR regulated dgdA gene expression, but not D or L-alanine induced the conformational changes on DNA-protein complex. To further confirm this result, eleven amino acids with structures similar to 2-methylalainine were tested for their ability on affecting the binding of the DgdR protein to its operator site. Among these amino acids tested, only 2-methylalanine, 1-aminocyclopentane-1-carboxylic acid, S-2-aminobutanoic acid, RS-isovaline, and 2-trifluoromethyl-2-aminobutanoic acid generated the measurable band shifting. D- or L-norvaline, 2,2-diethyl glycine, and 2-trifluoromethylalanine did not cause any measurable change. It was concluded that both alkyl side chain size and hydrophobicity are important for the inducer recognition and binding in this protein. To solve the problem in DgdR protein purification caused by low solubility of this protein, a dgdR fusion gene to malE gene was constructed. This fusion gene provides a useful tool to further study and crystallize the DgdR protein.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2000
    Date
    2000-12
    Type
    Dissertation
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.