• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Non-linear dynamics of marine ecosystem models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gibson.Georgina.2004.pdf
    Size:
    10.16Mb
    Format:
    PDF
    Download
    Author
    Gibson, Georgina Anne
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5035
    Abstract
    Despite a rapid trend towards more realistic Nutrient-Phytoplankton-Zooplankton (NPZ) models, in which zooplankton are presented with multiple nutritional resources, investigations into the fundamental dynamics of these newer models have been limited. The objective of this dissertation was to explore the dynamical behavior of such NPZ models parameterized for the coastal Gulf of Alaska. With alternative stationary forcing regimes and zooplankton grazing functions, the dynamics of one-dimensional NPZ models were investigated for a range of specific predation rates (h) and predation exponents (q), which together define the form of the predation (model closure) function. Oscillations in state variables are shown to be an intrinsic property of the NPZ models, not dependent on variable seasonal forcing for their existence. Increasing mixed layer diffusivity or reducing mixed layer depth increased model excitability; it is hypothesized that this is due to the resultant increase in flux of utilizable nutrient. Model behavior was also strongly influenced by the form of both the grazing and predation functions. For all of the grazing functions implemented, Hopf bifurcations, where the form of the solution transitioned between steady equilibrium and periodic limit cycles, persisted across the q-h parameter space. Regardless of the values of h and q, with some forms of the grazing function steady equilibrium solutions that simultaneously comprised non-zero concentrations for all model components could not be found. The inclusion of sinking detritus in the model had important implications for the composition and excitability of model solutions, generally increasing the region of q-h space for which oscillatory solutions were found. Therefore, in order to correctly simulate the depth-explicit concentrations of model components, or to have an accurate understanding of the potential excitability of the system, inclusion of this component is valuable. This dissertation highlights the importance of understanding the potential impact that choice of functional response may have on the intrinsic oscillatory nature of a model prior to interpreting results from coupled bio-physical simulations. As we come to rely more on ecosystem models as a tool to interpret marine ecosystem functionality it will be important to improve our understanding of the non-linear behavior inherent in these models.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2004
    Table of Contents
    General introduction -- Development of an NPZ model with multiple prey types -- Development of an NPZ model with multiple prey types -- Linear stability analysis of an NPZ model with multiple prey types -- Non-linear dynamics of a pelagic ecosystem model with multiple predator and prey types -- The role of detritus in NPZ model dynamics -- Discussion and conclusions.
    Date
    2004-12
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.