• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • College of Natural Science and Mathematics (CNSM)
    • Biology and Wildlife
    • Faculty
    • Huettmann, Falk
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • College of Natural Science and Mathematics (CNSM)
    • Biology and Wildlife
    • Faculty
    • Huettmann, Falk
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Model-predicting the Effect of Freshwater Inflow on Saltwater Layers, Migration and Life History of Zooplankton in the Arctic Ocean: Towards Scenarios and Future Trends

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Schmid_Moritz_M.Sc_thesis_FINAL.pdf
    Size:
    34.52Mb
    Format:
    PDF
    Download
    Author
    Schmid, Moritz
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5116
    Abstract
    The Arctic Ocean is warming up and an increasing freshwater inflow is triggering major changes in ocean layers. This model study aims at creating a baseline, and analyzing the effect of freshwater content changes, subsequent freshwater sealing as well as related parameters in the Arctic Ocean on migration and life history of zooplankton such as copepods and euphausiids. Copepods and euphausiids make for a major part of the zooplankton biomass in the Arctic Ocean, and are an important part of the food chain. Analyses are carried out using an ecosystem-based, spatial modeling approach with machine learning algorithms (Salford Systems TreeNet®, Random Forests® and R implementations). The underlying data consists of over 100 predictors including a globally unique data set of physical oceanography. Raw data that was used in this project is available as metadata from the Core Science Metadata Clearinghouse (former National Biological Information Infrastructure) and available at http://mercury.ornl.gov/clearinghouse/ and on servers from the University of Alaska Fairbanks. The Canadian Earth System Model 2 (CanESM2) was utilized to model the effect of changing climate on zooplankton for the next 100 years and for a low emission (RCP26) and a high emission scenario (RCP85). The results consist of spatially explicit (where every point in the layer is geo referenced) and predicted layers for Geographic Information Systems (GIS) that show predicted plankton presence/random absence as well as the relative index of depth and life stage distribution where the zooplankton is most likely to occur. The models show a clear trend towards an increasing relative index of depth where zooplankton is most likely to be found for the year 2100. Moreover, a trend towards a diminishing ecological niche for adult life stages of zooplankton was observed. These changes add stress to the life of zooplankton, especially regarding the diel vertical migration of mostly adult life stages. If zooplankton has to migrate a longer way, this will most likely increase energy expenditure and predation risk which ultimately decreases fitness. When accounting for other man-made impacts on the ocean such as ocean acidification and increasing shipping in the Arctic and taking the big picture into account, the outlook and conditions for zooplankton in 2100 are negative.
    Table of Contents
    Abstract -- Acknowledgements -- List of Abbreviations -- Units -- Content -- List of Figures -- List of Tables -- 1: Introduction -- 2: Methods -- 3: Results -- Discussion -- References -- Appendix
    Date
    2012-04
    Type
    Thesis
    Collections
    Huettmann, Falk

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.