• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Computer Science
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A sensitivity analysis of a biological module discovery pipeline

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Long_uaf_0006E_10348.pdf
    Size:
    15.83Mb
    Format:
    PDF
    Download
    Author
    Long, James
    Chair
    Roth, Mitchell
    Committee
    Rhodes, John
    Marr, Thomas
    Hartman, Chris
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5749
    Abstract
    Gene expression is the term applied to the combination of transcription, the process of copying information stored in DNA (deoxyribonucleic acid) into a transcript, and translation, the process of reading a transcript in order to manufacture a cellular product. Cellular products are typically proteins, which can combine either structurally or in concert to accomplish one or more tasks. Cooperating protein combinations are called modules, and it is thought that groups of transcripts with high correlation between their respective concentrations may indicate such modules. An open-source version of the CODENSE algorithm was developed with improved correlation methods to computationally test this hypothesis on an artificial transcription network containing a known module motif. The artificial network was used as input to a biochemical simulator in order to obtain synthetic transcription data, which was then fed to the pipeline whose purpose it is to discover modules in such data. Any discovered modules are compared to the known modules in the original network during a sensitivity analysis, where the process is repeated thousands of times with slightly varied parameters for each run. This process quantifies the sensitivity of pipeline output to each parameter of the pipeline, the most sensitive of which suggest what parts of the pipeline may be candidates for further refinement. The sensitivity analysis was then extended to include variation of biological network parameters, and noisy data. Lessons learned were then extended to the case of two known modules.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015
    Date
    2015-05
    Type
    Dissertation
    Collections
    Computer Science

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.