• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Natural Sciences and Mathematics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Natural Sciences and Mathematics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Examining the role of sea ice and meteorology in Arctic boundary layer halogen chemistry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Peterson_uaf_0006E_10324.pdf
    Size:
    13.83Mb
    Format:
    PDF
    Download
    Author
    Peterson, Peter Kevin
    Chair
    Simpson, William
    Committee
    Trainor, Thomas
    Tape, Carl
    Douglas, Thomas
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5755
    Abstract
    Given the ubiquitous nature of ice, chemistry taking place on ice surfaces has a substantial effect on the environment, particularly in the polar regions. The return of sunlight to the polar regions releases halogen radicals (e.g. Br, Cl and their oxides, e.g. BrO) generated from salts on ice surfaces. These radicals fundamentally alter the chemistry of the Arctic boundary layer through processes such as boundary-layer ozone depletion events and mercury deposition events. Current understanding of the chemical processes involved in Arctic halogen chemistry is inhibited by a lack of knowledge about the ice surfaces on which this chemistry is thought to take place, as well as the sparsity of long-term field observations of this chemistry and its effects. This dissertation addresses both needs through a combination of laboratory experiments and long-term field studies. First, we use X-ray absorption computed micro-tomography at the Advanced Photon Source to image brine distributions within laboratory grown mimics of sea-ice features. These experiments showed that when brine is introduced to ice via wicking of brine from a saline surface, the resulting brine distribution is heterogeneous, with brine existing in distinct regions within the sample, rather than evenly spreading over the sample surface. To examine the horizontal and vertical extent of halogen chemistry in the Arctic boundary layer, we conducted long-term measurements of BrO at Barrow, Alaska using Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). We developed a method to reduce these measurements to timeseries of near-surface and total column amounts of BrO. These measurements showed that the vertical distribution is highly variable, ranging from shallow layer events confined to the lowest 200 m, to distributed column events, which have lower mixing ratios of BrO, but are more distributed throughout approximately the lowest kilometer of the atmosphere. We find that the observed vertical distributions of BrO are influenced by atmospheric stability. We found minimal influence of wind speed on either lower-tropospheric bromine activation (LT-VCD) or the vertical distribution of BrO, while examination of seasonal trends and the temperature dependence of the vertical distribution support the finding that atmospheric stability affects the distribution of BrO. While shallow layer events have higher concentrations of halogens, distributed column events tend to have higher overall amounts of activation, implying that in situ near surface measurements may be insufficient to constrain the role of environmental parameters in the activation of halogens. Examination of multiple years of data at Barrow, Alaska shows that time spent in first year ice (FYI) areas is weakly linearly correlated (R=0.38) with the activation of BrO. However, examining annual averages of BrO shows that despite the non-linear relationship between time in FYI areas and BrO, time spent in FYI areas still influences the interannual variability of BrO.
    Description
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015
    Date
    2015-05
    Type
    Thesis
    Collections
    College of Natural Sciences and Mathematics
    Theses (Chemistry and Biochemistry)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2021 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.