• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Three dimensional computational fluid dynamics models of pollutant transport in a deep open pit mine under Arctic air inversion and mitigation measures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Raj_uaf_0006E_10343.pdf
    Size:
    76.93Mb
    Format:
    PDF
    Download
    Author
    Raj, Kumar Vaibhav
    Chair
    Bandopadhyay, Sukumar
    Committee
    Fochesatto, G. Javier
    Nelson, Michael G.
    Ganguli, Rajive
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5756
    Abstract
    As open pit mines continue to grow deeper and productivity continues to increase, the management of air pollution can become challenging. One of the challenges, common during winter in deep open pit mines operating in the Arctic, is the occurrence of atmospheric inversion. In itself, inversion is not hazardous. However, due to the emission of gases and particulates during the mining process, the air within the pit can be severely contaminated, rather quickly, leading to serious health and safety consequences. The problem is complex and any solution approach will require a good understanding of the interaction of the aerodynamic movement of air, the air inversion process, the meteorology, the pollutant sources, and the application of mechanical ventilators in open pit mines. Scientific literature related to open pit mine ventilation, particularly with respect to air inversion, is practically non-existent in the English literature. This is perhaps the first account of a three dimensional computational fluid dynamics (CFD) model of pollutant transport in an actual open pit mine under an Arctic air inversion. Advanced technology has made computers faster and more powerful, which allows computational fluid dynamics (CFD) procedures to be applied to many air flow problems. Thus, a CFD approach can be used to understand the transport of contaminant in the pit during inversion by using several turbulence models. An array of data is required to develop CFD models for open pit mine ventilation. The meteorological conditions within deep open pit mines are significantly affected by temperature and roughness conditions, which ultimately generate complex dispersion phenomena including separation of air flow and its recirculation. For the application of CFD, various data such as pollutants concentrations, temperature, velocity, pit contours, equipment locations, and radiation (shortwave and longwave) were collected from the selected open pit mine and the weather stations located nearby. Analysis of the weather data showed that inversions are due to elevated inversions in the selected open pit mine. Because an exact flow situation in open pit mines is not known a-priori, open pit air flow simulation and pollution transport are often highly sensitive to the type of flow model employed. It is therefore necessary to investigate various turbulent models to identify the appropriate model that will simulate the flow phenomena with reasonable accuracy and predict the contaminant distributions within the pit. Dispersion models differ in their assumptions and structures as well as in the algorithm used and as a result, predictions vary from model to model. Furthermore, it is also important to investigate the behavior of a CFD model when simulating complex phenomena, such as the transport and distribution of contaminants in an open pit mine under an Arctic air inversion. The simulation of an enhanced period of turbulence in the stable boundary layer (SBL) is of particular interest because traditional air pollution dispersion models cannot explicitly treat intermittent turbulence events, and yet the SBL is often the worst-case scenario in open pit pollution transport.Realizable κ-ε and Large Eddy Simulation (LES) models were used for understanding flow of gaseous contaminants. The 2010 pit configuration was used to develop models for understanding the gaseous transport under air inversion. During an inversion, turbulence is dominant at the bottom of the pit, while in the middle portion of the pit turbulence is intermittent and flow over the upper portion of the pit is mostly laminar. The realizable κ-ε model tends to over-predict the contaminant concentration, whereas, the LES model under-predicts the level of pollutant concentrations. Validation of the developed model was performed using the 2013 pit configuration. Despite the complex synoptic situations, the different meteorological input data and the fast changing conditions, the simulation results from the validation model were in good agreement regarding the dispersion of pollutants and other turbulent variables. Pollutant concentration values in the selected locations showed differences, but remained within the same order of magnitude in most cases. Removal of the harmful pollutants from the pit is significantly important for the health and safety of the mine workers. The mitigation models were developed for both the 2010 and the 2013 pit configurations. Several remedial measures such as the use of mechanical ventilators in forcing and exhaust mode, push-pull ventilation and a novel approach of using cloud cover were considered. Mitigation efforts employing mechanical means were unsuccessful in removing or diluting the contaminants to a safe level. The novel approach of using cloud cover over an open pit mine showed promise. With this approach, the model showed that the inversion could be lifted and pit could be cleared of all pollutants.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015
    Date
    2015-05
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.