• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Design of a receiver for measurement of real-time ionospheric reflection height

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Raghavendar_C_2005.pdf
    Size:
    85.34Mb
    Format:
    PDF
    Download
    Author
    Raghavendar, Changalvala
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/5999
    Abstract
    The HF (high frequency) radar at Kodiak Island, Alaska, is part of the SuperDARN (Super Dual Auroral Radar Network) network of radars designed to detect echoes from ionospheric field-aligned density irregularities. Normal azimuth scans of the radar begin on whole minute boundaries leading to 12 s downtime between each scan. The radar makes use of this down time, by stepping through eight different frequencies for each beam direction using 1 or 2 s integration periods. A new receiver system has been developed at Poker Flat Research Range (PFRR), to utilize the ground scatter returns from radar's sounding mode of operation and calculate the ionospheric virtual reflection height. This would result in considerable improvement in the accuracy of critical frequency and Angle Of Arrival (AOA) estimations made by the Kodiak SuperDARN.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2005
    Table of Contents
    Introduction -- Background -- Structure of the ionosphere -- Photoionization -- Recombination -- Layers -- Ionospheric refraction -- Ionospheric propagation -- Reflection at vertical incidence -- Virtual height concept -- Oblique incidence -- Motivation -- Problem statement and proposed solution -- Equipment overview -- Basic radar definitions -- Overview of the HF radar at Kodiak -- Frequency operation -- Sounding mode -- Antennas -- Power -- Receiver antenna -- Reflector analysis -- GPS clock card -- Clock card specifications -- Overview of PCI card countrol/status registers -- The synchronized generator : GPS mode outline -- Software time capture -- Event time capture -- Receiver card -- specifications -- The system design and implementation -- Specifications -- The pulse sequence -- The QNX operating system -- Configuring the clock card -- Configuring the GC214 -- Sampling -- Mixing -- Decimation -- Filtering -- Resampling -- GC214 latency -- Gain -- Data header format -- Direct memory access (DMA) -- DMA buffer creation -- RAM--disk -- External trigger synchronization -- Signal processing code -- Link budget -- Results and future work -- Final code -- Results -- Errors -- Applications -- Future work -- Bibliography.
    Date
    2005-08
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.