• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Measurement of gas-water relative permeabilities in hydrate systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jaiswal_N_2004.pdf
    Size:
    104.5Mb
    Format:
    PDF
    Download
    Author
    Jaiswal, Namit J.
    Chair
    Dandekar, Abhijit Y.
    Committee
    Chukwu, Godwin A.
    Khataniar, Santanu
    Patil, Shirish L.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6052
    Abstract
    Gas hydrates are considered to be an alternative energy resource of the future, as they exist in enormous quantities in permafrost and the offshore environment. One of the primary mechanisms involved in hydrate decomposition in porous media is the gas-water two-phase flow in the formations. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of gas-water flows and the difficulty of direct measurements for hydrate systems. As part of a major Alaska gas hydrate project, an experimental apparatus was designed and developed for forming gas hydrates in the laboratory and performing gas-water relative permeability experiments. In this study effective permeability and relative permeability across hydrate saturated consolidated Oklahoma 100 mesh sand and Anadarko field samples were measured. The results suggest that the relative permeability inferred from unsteady state core floods is a lumped parameter which not only includes hydrate saturation but also the effects of dissociation instabilities caused by fluid flow, fine migration and local compaction in porous media at low temperature. Furthermore, these properties are significantly altered by nature of hydrate distribution throughout the specimen, location within the pores, and concentration at specific locations.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2004
    Date
    2004-08
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.