• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Numerical modeling and remote sensing to determine depths of lava tubes and buried cylindrical hot sources

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Berthelote_A_2005.pdf
    Size:
    121.8Mb
    Format:
    PDF
    Download
    Author
    Berthelote, Antony Ray
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6066
    Abstract
    Estimating depths of buried lava tubes is important for determining the thermal budgets and effusion rates of certain volcanic systems. This research uses a laboratory experiment scaled to an observed lava tube system to measure the 3D temperature field surrounding a buried depth adjustable glass tube with hot honey flowing through it at varying conditions such as flow rate and temperature. Numerical techniques are used to model the laboratory experiment. The input parameters are then applied to non-laboratory situations. The surface thermal distributions from these models are analyzed to empirically derive a depth estimation function using regression techniques. This depth function is the first scaleable depth estimation technique which can be solved with remote sensing data alone. The minimum temperature, maximum temperature and width of a Lorentzian distribution, fit to a surface thermal transect, are used in the function to predict depth to the hot source. Sensitivity and error analysis of the function is carried out for depths ranging from 0.01 m to ±60 m with good results. The function gives accurate depth estimates of 0.2 m for extreme arctic environments, ±0.3 m for lava tubes and ± 55 m for subsurface coalfires.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2005
    Date
    2005-08
    Type
    Thesis
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.