• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Environmental drivers of deer population dynamics and spatial selection in Southeast Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gilbert_uaf_0006E_10377.pdf
    Size:
    11.96Mb
    Format:
    PDF
    Download
    Author
    Gilbert, Sophie L.
    Chair
    Hundertmark, Kris
    Committee
    Boyce, Mark
    Lindberg, Mark
    Person, David
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6088
    Abstract
    The coastal temperate rainforest is one of the rarest ecosystems in the world, and a major portion of the global total is found in Southeast Alaska. In this ecosystem, Sitka black-tailed deer are the dominant large herbivore, influencing large carnivores that prey on deer such as wolves and bears, as well as plant species and communities through browsing. In addition, deer play an important economic and cultural role for humans in Southeast Alaska, making up the large majority of terrestrial subsistence protein harvested each year as well as providing the backbone of a thriving tourism industry built around sport hunting. Given the importance of deer in this system, there remain a surprisingly large number of key gaps in our knowledge of deer ecology in Southeast Alaska. These knowledge gaps are potentially troubling in light of ongoing industrial timber-harvest across the region, which greatly alters habitat characteristics and value to wildlife. This dissertation research project was undertaken with the aim of filling several connected needs for further understanding deer ecology, specifically 1) patterns of reproduction and fawn survival, 2) population dynamics in response to environmental variability, and the underlying drivers of spatial selection during 3) reproduction and 4) winter. To fill these knowledge gaps, I developed robust statistical tools for estimating rates of fawn survival, and found that fawns must be captured at birth, rather than within several days of birth, in order to produce unbiased estimates because highly vulnerable individuals died quickly and were thus absent from the latter sample. I then use this robust approach to estimate vital rates, including fawn survival in winter and summer, and developed a model of population dynamics for deer. I found that winter weather had the strongest influence on population dynamics, via reduced over-winter fawn survival, with mass at birth and gender ratio of fawns important secondary drivers. To better understand deer-habitat relationships, I examined both summer and winter habitat selection patterns by female deer. Using summer-only data, I asked how reproductive female deer balance wolf and bear predation risk against access to forage over time. Predation risks and forage were strong drivers of deer spatial selection during summer, but reproductive period and time within reproductive period determined deer reaction to these drivers. To ensure adequate reproductive habitat for deer, areas with low predation risk and high forage should be conserved. Focusing on winter, I evaluated deer spatial selection during winter as a response to snow depth, vegetation classes, forage, and landscape features. I allowed daily snow depth measures to interact with selection of other covariates, and found strong support for deer avoidance of deep snow, as well as changes in deer selection of old-growth and second-growth habitats and landscape features with increasing snow depth. Collectively, this dissertation greatly improves our understanding of deer ecology in Alaska, and suggests habitat management actions that will help ensure resilient deer populations in the future.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015
    Date
    2015-08
    Type
    Dissertation
    Collections
    Biological Sciences
    Theses supervised by AKCFWRU

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.