• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Cold ions of ionospheric origin observed at the dayside magnetopause and their effects on magnetic reconnection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Lee_uaf_0006E_10365.pdf
    Size:
    24.79Mb
    Format:
    PDF
    Download
    Author
    Lee, Sun-Hee
    이, 선희
    Chair
    Zhang, Hui
    Committee
    Ng, Chung-Sang
    Otto, Antonius
    Zong, Qiu-Gang
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6194
    Abstract
    Magnetic reconnection at the dayside magnetopause is one of the most important mechanisms that efficiently transfers solar wind particles, momentum, and energy into the magnetosphere. Magnetic reconnection at the magnetopause is usually asymmetric since the plasma and magnetic field properties are quite different in the magnetosphere and the magnetosheath. Cold dense plasma, originating either directly from the ionosphere or from the plasmasphere, has often been observed at the adjacent magnetopause. These cold plasmas may affect reconnection since they modify the plasma properties on the magnetospheric side significantly. This dissertation presents case and statistical studies of the characteristics of the cold ions observed at the dayside magnetopause by using Cluster spacecraft datasets. The plasmaspheric plumes have been distinguished from the ionospheric outows using ion pitch angle distributions. The ionospheric outows feature unidirectional or bidirectional field-aligned pitch angle distributions, whereas the plasmaspheric plumes are characterized by 90° pitch angle distributions. The occurrence rates of the plasmaspheric plumes and ionospheric outows and their dependence on the solar wind/Interplanetary Magnetic Field (IMF) conditions have been investigated. It is found that the occurrence rate of plasmaspheric plume or ionospheric plasma strongly depends on the solar wind/IMF conditions. In particular, plasmaspheric plumes tend to occur during southward IMF while ionospheric outows tends to occur during northward IMF. The occurrence rate of the plasmaspheric plumes is significantly higher on the duskside than that on the dawnside, indicating that the plasmaspheric plumes may lead to a dawn-dusk asymmetry of dayside reconnection. Furthermore, this dissertation investigates the behavior of the cold dense plasma of ionospheric origin during magnetic reconnection at the dayside magnetopause. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection near the subsolar magnetopause, the colder ions are simply entrained by E x B drift at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play a very limited role in magnetic reconnection process. Finally, this dissertation examines a controlling factor that leads to the asymmetric reconnection geometry at the magnetopause. It is demonstrated that the separatrix and ow boundary angles are greater on the magnetosheath side than on the magnetospheric side of the magnetopause, probably due to the stronger density asymmetry rather than magnetic field asymmetry at this boundary.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2015
    Date
    2015-08
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.