Now showing items 21-40 of 95

    • Using movements, genetics and trophic ecology to differentiate inshore from offshore aggregations of humpback whales in the Gulf of Alaska

      Witteveen, Briana Harmony; Straley, Janice M.; Chenoweth, Ellen M.; Baker, C. Scott; Barlow, Jay; Matkin, Craig O.; Gabriele, Christine M.; Neilson, Janet L.; Steel, Debbie J.; von Ziegesar, Olga; et al. (Inter-Research Science Publisher, 2011-09-23)
      Humpback whales Megaptera novaeangliae have been studied in the coastal waters of the Gulf of Alaska (GOA) since the late 1960s, but information about whales foraging offshore is limited. A large-scale collaborative project (SPLASH) provided opportunities to study humpback whales in both inshore and offshore habitats. Using identification photographs and biopsy samples, we explored individual movements, the distribution of mitochondrial (mtDNA) haplotypes, and trophic levels for humpback whales within 3 regions (Kodiak, KOD; Prince William Sound, PWS; and southeastern Alaska, SEAK) of the GOA to determine whether inshore and offshore aggregations of humpback whales are distinct. Each region was divided into inshore and offshore habitats, creating 6 subregions for comparison. Results documenting 2136 individual whales showed that movement within the study area was most frequent between inshore and offshore subregions within a region. In general, movement between regions was minimal. Tissue samples of 483 humpback whales included 15 mtDNA haplotypes. Pairwise chi-squared tests showed haplotype differences between subregions, but inshore PWS was the only subregion with a haplotype composition significantly different than all other subregions. Trophic levels, as inferred from stable nitrogen isotope ratios, were significantly different among subregions, ranging from 3.4 to 4.5. Pairwise comparisons showed that inshore PWS was again the only subregion that significantly differed from all others. Results suggest that the combined inshore and offshore habitats for KOD and the inshore and offshore habitats for SEAK should each be considered as single regional feeding aggregations, while inshore PWS may represent a separate aggregation from PWS offshore.
    • Depredating sperm whales in the Gulf of Alaska: local habitat use and long distance movements across putative population boundaries

      Straley, Janice M.; Schorr, G. S.; Thode, A. M.; Calambokidis, J.; Lunsford, C. R.; Chenoweth, Ellen M.; O'Connell, V. M.; Andrews, R. D. (Inter-Research Science Publisher, 2014-05-08)
      Satellite tags were attached to 10 sperm whales Physeter macrocephalus (1 whale was tagged in 2 different years) to determine the movements of sperm whales involved in removal of sablefish from longline fishing gear in the Gulf of Alaska (GOA). Tags transmitted from 3 to 34 d (median = 22) in 2007 and 7 to 158 d (median = 45) in 2009. Seven whales stayed in the GOA; all were associating with fishing vessels along the slope. Two whales headed south in June shortly after being tagged; one reached the inner third of the Sea of Cortez; the other’s last location was offshore Mexico at 14°N. A third whale stayed in the GOA until October and then headed south, reaching central Baja, Mexico, 158 d after tagging. The whales that travelled to lower latitudes followed no pattern in timing of departure, and at least 2 had different destinations. All whales passed through the California Current without stopping and did not travel to Hawaii; both are areas with known concentrations of sperm whales. Whales travelled faster when south of 56°N than when foraging in the GOA (median rate of median horizontal movement = 5.4 [range: 4.1 to 5.5] and 1.3 [range: 0.6 to 2.5] km h−1, respectively). Tagged sperm whales primarily travelled over the slope, but one spent considerable time over the ocean basin. Information on the timing and movement patterns of sperm whales may provide a means for fishermen to avoid fishing at whale hot spots, potentially reducing interactions between whales and fishermen.
    • Local recruitment of humpback whales in Glacier Bay and Icy Strait, Alaska, over 30 years

      Pierszalowski, Sophie P.; Gabriele, Christine M.; Steel, Debbie J.; Neilson, Janet L.; Vanselow, Phoebe B. S.; Cedarleaf, Jennifer A.; Straley, Janice M.; Baker, C. Scott (2016-03-15)
      We provide new information on the scale at which fidelity and recruitment underlie observed increases in humpback whale Megaptera novaeangliae populations. We used photoidentification records and DNA profiles from whales in Glacier Bay and Icy Strait (GBIS), southeastern Alaska (SEAK) to investigate 3 sources of population increase over 33 yr (1973−2005): local GBIS recruitment, recruitment from elsewhere in SEAK, and immigration from outside SEAK. We defined 2 temporal strata for these longitudinal records: ‘founder’ individuals identified from 1973 to 1985 (n = 74; n = 46 with DNA profiles) and ‘contemporary’ individuals identified from 2004 to 2005 (n = 171; n = 118 with DNA profiles). To distinguish between local recruitment and recruitment from elsewhere in SEAK, we estimated the proportion of the contemporary stratum that was either a returning founder or descended from a founder female. After excluding 42 contemporary whales without a known mother or genotype to infer maternity, 73.6% of the contemporary stratum was confirmed or inferred through parentage analysis to be either a returning founder or a descendant of a founder mother. Of the 25 females with genotypes in the founder stratum, 24 (96%) were either represented in the contemporary stratum, had at least 1 descendant in the contemporary stratum, or both. We found no significant differences in microsatellite allele or mtDNA frequencies between the strata, suggesting little or no immigration from other feeding grounds. Our results highlight the importance of local habitat protection for a recovering species with culturally inherited migratory destinations.
    • Ecosystem response persists after a prolonged marine heat wave

      Suryan, R. M.; Arimitsu, M. L.; Coletti, H. A.; Hopcroft, R. R.; Zador, S. G.; Lindeberg, M. R.; Straley, Janice M. (Nature Research, 2021-03-18)
      Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.
    • Recycling Attitudes and Behavior among a Clinic-Based Sample of Low-Income Hispanic Women in Southeast Texas

      Pearson, Heidi C.; Dawson, Lauren, N.; Breitkopf, Carmen Radecki (2012-04-06)
      We examined attitudes and behavior surrounding voluntary recycling in a population of low-income Hispanic women. Participants (N = 1,512) 18–55 years of age completed a self-report survey and responded to questions regarding household recycling behavior, recycling knowledge, recycling beliefs, potential barriers to recycling (transportation mode, time), acculturation, demographic characteristics (age, income, employment, marital status, education, number of children, birth country), and social desirability. Forty-six percent of participants (n = 810) indicated that they or someone else in their household recycled. In a logistic regression model controlling for social desirability, recycling behavior was related to increased age (P,0.05), lower acculturation (P,0.01), knowing what to recycle (P,0.01), knowing that recycling saves landfill space (P,0.05), and disagreeing that recycling takes too much time (P,0.001). A Sobel test revealed that acculturation mediated the relationship between recycling knowledge and recycling behavior (P,0.05). We offer new information on recycling behavior among Hispanic women and highlight the need for educational outreach and intervention strategies to increase recycling behavior within this understudied population.
    • CONSERVATION BENEFITS OF WHALE WATCHING IN JUNEAU, ALASKA

      Schuler, Alicia, R.; Pearson, Heidi C. (Cognizant, LLC, 2020-01-03)
      An increasing number of visitors to Juneau, AK, alongside a predictable population of humpback whales (Megaptera novaeangliae), has supported the substantial growth of its whale-watching indus- try. The industry provides benefits to the community through economic gains, while the experi- ence can foster environmental awareness and support for protection of whales and the environment. However, the sustainability of the industry could be jeopardized if increasing whale-watching vessel pressure affects the health of its resource, the whales. This study investigates whether participation in whale-watching tours in Juneau, AK can support conservation of whales and the environment. Participant knowledge, attitudes, intentions, and behaviors were obtained from 2,331 respondents in surveys before, after, and 6 months after a whale-watching tour during the 2016 and 2017 seasons. Following a whale watch, the percentage of participants that indicated whale watching as a knowl- edge source increased (p = 0.022), awareness of guidelines and regulations doubled (p < 0.001), and strong support for regulations increased (p = 0.016). Six months later, these responses remained significantly higher than before the whale watch. Despite knowledge of distance threshold increasing after a whale watch (p = 0.003) and 6 months after (p = 0.021), getting close to whales remained an important factor in a participant’s whale watch. Participants had a higher likelihood of strongly sup- porting guidelines and regulations if they indicated that boats can have a negative impact on whales or were aware of guidelines and regulations. Lastly, participants that acknowledged negative effects on whales from boats had higher overall proenvironmental attitudes. This study indicates that incor- porating messages that facilitate participant awareness of guidelines/regulations and the purpose of those measures can support conservation and protection of local whale populations through manag- ing participant expectations and ultimately encouraging operator compliance.
    • Humpback Whale Movements and Behavior in Response to Whale-Watching Vessels in Juneau, AK

      Schuler, Alicia, R.; Piwetz, Sarah; Clemente, Jacopo Di; Steckler, David; Mueter, Franz; Pearson, Heidi C. (2019-11-20)
      The whale-watching industry in Juneau, Alaska relies primarily on the presence of North Pacific humpback whales (Megaptera novaeangliae). To meet demands from the rapidly growing tourism industry, the number of whale-watching vessels in this region has tripled over the last 18 years. As a result, increased vessel presence could have negative effects on humpback whales, ranging from short-term behavioral disturbance to long-term impacts. The current humpback whale viewing regulations are outdated and may not be as effective as they were 18 years ago, when both the whale-watching industry and humpback whale population were smaller. The present study assessed how humpback whale movement and behavioral patterns were affected by (1) vessel presence and number of vessels present, and (2) time spent in the presence of vessels. The study also determined how humpback whale behavioral state transitions were affected by vessel presence. A total of 201 humpback whale focal follows were conducted during summer 2016 and 2017. Based on linear mixed effects models, whales in the presence (vs. absence) of vessels exhibited 38.9% higher deviation in linear movement (p = 0.001), 6.2% increase in swimming speed (p = 0.047) and a 6.7% decrease in inter-breath intervals (IBI) (p = 0.025). For each additional vessel present, deviation increased by 6.2% (p = 0.022) and IBI decreased by 3.4% (p = 0.001). As time spent in the presence of vessels increased, respiration rate increased (p = 0.011). Feeding and traveling humpback whales were likely to maintain their behavioral state regardless of vessel presence, while surface active humpback whales were likely to transition to traveling in the presence of vessels. These short-term changes in movement and behavior in response to whale-watching vessels could lead to cumulative, long-term consequences, negatively impacting the health and predictability of the resource on which the industry relies. Current formal vessel approach regulations and voluntary guidelines should be revisited to reduce vessel pressure and mitigate potential negative effects of this growing whale-watching industry.
    • Oceanographic Determinants of the Abundance of Common Dolphins (Delphinus delphis) in the South of Portugal.

      Castro, J.; Couto, A.; Borges, F. O.; Laborde, M. I.; Pearson, H. C.; Rosa, R.; Cid, A.; Pearson, Heidi C. (MDPI, 2020-08)
      Off mainland Portugal, the common dolphin (Delphinus delphis) is the most sighted cetacean, although information on this species is limited. The Atlantic coast of Southern Portugal is characterized by an intense wind-driven upwelling, creating ideal conditions for common dolphins. Using data collected aboard whale-watching boats (1929 sightings and 4548 h effort during 2010–2014), this study aims to understand the relationships between abundance rates (AR) of dolphins of different age classes (adults, juveniles, calves and newborns) and oceanographic [chlorophyll a (Chl-a) and sea surface temperature (SST)] variables. Over 70% of the groups contained immature animals. The AR of adults was negatively related with Chl-a, but not related to SST values. The AR of juveniles was positively related with SST. For calves and newborns, although the relationship between SST and AR is similar to that observed for juveniles, the effect could not be distinguished from zero. There was no relationship between Chl-a levels and the AR of juveniles, calves and newborns. These results corroborate previous findings that common dolphins tend to occur in highly productive areas demonstrating linkages between their abundance and oceanographic variables, and that this region may be a potential nursery ground.
    • Morainal Bank Evolution and Impact on Terminus Dynamics During a Tidewater Glacier Stillstand

      Eidam, E. F.; Sutherland, D. A.; Duncan, D.; Kienholz, Christian; Amundson, Jason M.; Motyka, R. J. (American Geophysical Union, 2020-09-25)
      Sedimentary processes are known to help facilitate tidewater glacier advance, but their role in modulating retreat is uncertain and poorly quantified. In this study we use repeated seafloor bathymetric surveys and satellite‐derived terminus positions from LeConte Glacier, Alaska, to evaluate the evolution of a morainal bank and related changes in terminus dynamics over a 17‐year period. The glacier experienced a rapid retreat between 1994 and 1999, before stabilizing at a constriction in the fjord. Since then, the glacier terminus has remained stabilized while constructing a morainal bank up to 140 m high in water depths of 240–260 m, with rates of sediment delivery of 3.3 Å~ 105 to 3.8 Å~ 105 m3 a−1. Based on repeated interannual surveys between 2016 and 2018, the moraine is a dynamic feature characterized by push ridges, evidence of active gravity flows, and bulldozing by the glacier at rates of up to meters per day. Beginning in 2016, the summertime terminus has become increasingly retracted, revealing a newly emerging basin potentially signaling the onset of renewed retreat. Between 2000 and 2016, the growing moraine reduced the exposed submarine area of the terminus by up to 22%, altered the geometry of the terminus during seasonal advances, and altered the terminus stress balance. These feedbacks for calving, melting, and ice flow likely represent mechanisms whereby moraine growth may delay glacier retreat, in a system where readvance is unlikely.
    • Formation, flow and break-up of ephemeral ice mélange at LeConte Glacier and Bay, Alaska.

      Amundson, Jason M.; Kienholz, Christian; Hager, Alexander O.; Jackson, Rebecca H.; Motyka, Roman J.; Nash, Jonathan D.; Sutherland, David A. (Cambridge University Press, 2020-05-14)
      Ice mélange has been postulated to impact glacier and fjord dynamics through a variety of mechanical and thermodynamic couplings. However, observations of these interactions are very limited. Here, we report on glaciological and oceanographic data that were collected from 2016 to 2017 at LeConte Glacier and Bay, Alaska, and serendipitously captured the formation, flow and break-up of ephemeral ice mélange. Sea ice formed overnight in mid-February. Over the subsequent week, the sea ice and icebergs were compacted by the advancing glacier terminus, after which the ice mélange flowed quasi-statically. The presence of ice mélange coincided with the lowest glacier velocities and frontal ablation rates in our record. In early April, increasing glacier runoff and the formation of a sub-ice-mélange plume began to melt and pull apart the ice mélange. The plume, outgoing tides and large calving events contributed to its break-up, which took place over a week and occurred in pulses. Unlike observations from elsewhere, the loss of ice mélange integrity did not coincide with the onset of seasonal glacier retreat. Our observations provide a challenge to ice mélange models aimed at quantifying the mechanical and thermodynamic couplings between ice mélange, glaciers and fjords.
    • Deglacierization of a marginal basin and implications for outburst floods

      Kienholz, Christian; Pierce, Jamie; Hood, Eran; Amundson, Jason M.; Wolken, Gabriel; Jacobs, Aaron; Hart, Skye; Jones, Katreen Wikstrom; Abdel-Fattah, Dina; Johnson, Crane; et al. (Frontiers in Earth Science, 2020-05-27)
      Suicide Basin is a partly glacierized marginal basin of Mendenhall Glacier, Alaska, that has released glacier lake outburst floods (GLOFs) annually since 2011. The floods cause inundation and erosion in the Mendenhall Valley, impacting homes and other infrastructure. Here, we utilize in-situ and remote sensing data to assess the recent evolution and current state of Suicide Basin. We focus on the 2018 and 2019 melt seasons, during which we collected most of our data, partly using unmanned aerial vehicles (UAVs). To provide longer-term context, we analyze DEMs collected since 2006 and model glacier surface mass balance over the 2006–2019 period. During the 2018 and 2019 outburst flood events, Suicide Basin released ∼ 30 Å~ 106 m3 of water within approximately 4–5 days. Since lake drainage was partial in both years, these ∼ 30 Å~ 106 m3 represent only a fraction (∼ 60%) of the basin’s total storage capacity. In contrast to previous years, subglacial drainage was preceded by supraglacial outflow over the ice dam, which lasted ∼ 1 day in 2018 and 6 days in 2019. Two large calving events occurred in 2018 and 2019, with submerged ice breaking off the main glacier during lake filling, thereby increasing the basin’s storage capacity. In 2018, the floating ice in the basin was 36 m thick on average. In 2019, ice thickness was 29 m, suggesting rapid decay of the ice tongue despite increasing ice inflow from Mendenhall Glacier. The ice dam at the basin entrance thinned by more than 5 m a–1 from 2018 to 2019, which is approximately double the rate of the reference period 2006–2018. While ice-dam thinning reduces water storage capacity in the basin, that capacity is increased by declining ice volume in the basin and longitudinal lake expansion, with the latter process challenging to predict. The potential for premature drainage onset (i.e., drainage before the lake’s storage capacity is reached), intermittent drainage decelerations, and early drainage termination further complicates prediction of future GLOF events.
    • MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development

      Brunt, Kelly M.; Neumann, Thomas A.; Amundson, Jason M.; Kavanaugh, Jeffrey L.; Moussavi, Mahsa S.; Walsh, Kaitlin M.; Cook, William B.; Markus, Thorsten (Copernicus Publications on behalf of the European Geosciences Union, 2016-08-10)
      Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS) which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1) of an ice-sheet interior over 50 to 150m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.
    • Testing a glacial erosion rule using hang heights of hanging valleys, Jasper National Park, Alberta, Canada

      Amundson, Jason M.; Iverson, N. R. (American Geophysical Union, 2006)
      In most models of glacial erosion, glacier sliding velocity is hypothesized to control rates of bedrock erosion. If this hypothesis is correct, then the elevation difference between hanging and trunk valley floors, the hang height, should be dictated by the relative sliding velocities of the glaciers that occupied these valleys. By considering sliding velocity to be proportional to balance velocity and using mass continuity, hang height is expressed in terms of glacier catchment areas, slopes, and widths, which can be estimated for past glaciers from the morphology of glacial valleys. These parameters were estimated for 46 hanging valleys and their trunk valleys in three adjacent regions of Jasper National Park. The variability in valley morphology can account for 55–85% of the hang height variability if erosion rate scales with balance velocity raised to a power of 1/3. This correspondence is in spite of spatial variations in glaciation duration, snow accumulation rates, and other variables that likely affected hang heights but cannot be readily estimated and so are not included in our formulation. Thus it appears that balance velocity, and by extension, sliding velocity if the two are proportional, may be a reasonable control variable for assessing erosion rate.
    • A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration.

      Amundson, Jason M.; Guttenberg, Nicolas; Abbott, Dorian S.; Burton, Justin C.; Cathles, L. M.; Macayeal, Douglas R.; Zhang, Wendy W. (International Glaciology Society, 2011)
      Potential energy released from the capsize of ice-shelf fragments (icebergs) is the immediate driver of the brief explosive phase of ice-shelf disintegration along the Antarctic Peninsula (e.g. the Larsen A, Larsen B and Wilkins ice shelves). The majority of this energy powers the rapidly expanding plume of ice-shelf fragments that expands outward into the open ocean; a smaller fraction of this energy goes into surface gravity waves and other dynamic interactions between ice and water that can sustain the continued fragmentation and break-up of the original ice shelf. As an initial approach to the investigation of ice-shelf fragment capsize in ice-shelf collapse, we develop a simple conceptual model involving ideal rectangular icebergs, initially in unstable or metastable orientations, which are assembled into a tightly packed mass that subsequently disassembles via massed capsize. Computations based on this conceptual model display phenomenological similarity to aspects of real ice-shelf collapse. A promising result of the conceptual model presented here is a description of how iceberg aspect ratio and its statistical variance, the two parameters related to ice-shelf fracture patterns, influence the enabling conditions to be satisfied by slow-acting processes (e.g. environmentally driven melting) that facilitate ice-shelf disintegration.
    • Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland

      Cassoto, Ryan; Fahnestock, Mark; Amundson, Jason M.; Truffer, Martin; Boettcher, Margaret S.; De La Pena, Santiago; Howat, Ian (International Glaciological Society, 2018-11-29)
      Jakobshavn Isbræ, a tidewater glacier that produces some of Greenland’s largest icebergs and highest speeds, reached record-high flow rates in 2012 (Joughin and others, 2014). We use terrestrial radar interferometric observations from August 2012 to characterize the events that led to record-high flow. We find that the highest speeds occurred in response to a small calving retreat, while several larger calving events produced negligible changes in glacier speed. This non-linear response to calving events suggests the terminus was close to flotation and therefore highly sensitive to terminus position. Our observations indicate that a glacier’s response to calving is a consequence of two competing feedbacks: (1) an increase in strain rates that leads to dynamic thinning and faster flow, thereby promoting desta- bilization, and (2) an increase in flow rates that advects thick ice toward the terminus and promotes restabilization. The competition between these feedbacks depends on temporal and spatial variations in the glacier’s proximity to flotation. This study highlights the importance of dynamic thinning and advective processes on tidewater glacier stability, and further suggests the latter may be limiting the current retreat due to the thick ice that occupies Jakobshavn Isbræ’s retrograde bed.
    • Active seismic studies in valley glacier settings: strategies and limitations

      Zechmann, Jenna M.; Booth, Adam D.; Truffer, Martin; Gusmeroli, Alessio; Amundson, Jason M.; Larsen, Christopher S. (International Glaciological Society, 2018-09-20)
      Subglacial tills play an important role in glacier dynamics but are difficult to characterize in situ. Amplitude Variation with Angle (AVA) analysis of seismic reflection data can distinguish between stiff tills and deformable tills. However, AVA analysis in mountain glacier environments can be problem- atic: reflections can be obscured by Rayleigh wave energy scattered from crevasses, and complex basal topography can impede the location of reflection points in 2-D acquisitions. We use a forward model to produce challenging synthetic seismic records in order to test the efficacy of AVA in crevassed and geo- metrically complex environments. We find that we can distinguish subglacial till types in moderately cre- vassed environments, where ‘moderate’ depends on crevasse spacing and orientation. The forward model serves as a planning tool, as it can predict AVA success or failure based on characteristics of the study glacier. Applying lessons from the forward model, we perform AVA on a seismic dataset col- lected from Taku Glacier in Southeast Alaska in March 2016. Taku Glacier is a valley glacier thought to overlay thick sediment deposits. A near-offset polarity reversal confirms that the tills are deformable.
    • Tracking icebergs with time-lapse photography and sparse optical flow, LeConte Bay, Alaska, 2016–2017

      Kienholtz, Christian; Amundson, Jason M.; Motyka, Roman J.; Jackson, Rebecca H.; Mickett, John B.; Sutherland, David A.; Nash, Jonathan D.; Winters, Dylan S.; Dryer, William P.; Truffer, Martin (International Glaciological Society, 2019-03-07)
      We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000 photos at frame rates of 0.5–4.0 min−1 . Hourly to daily average velocity fields in map coordinates illustrate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermittently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP) measurements yield best agreement for the uppermost ADCP levels (∼ 12 m and above), in line with prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras compare favorably, although cameras with lower frame rates (0.5 min−1 ) tend to underestimate high flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance of high image frame rates, while spatial resolution is of secondary importance. Application of our procedure to other fjords will be successful if iceberg concentrations are high enough and if the camera frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).
    • Direct observations of submarine melt and subsurface geometry at a tidewater glacier

      Sutherland, D. A.; Jackson, R. H.; Kienholtz, C.; Amundson, Jason M.; Dryer, W. P.; Duncan, D.; Eidam, E. F.; Motyka, R. J.; Nash, J. D. (American Association for the Advancement of Science, 2019-07-26)
      Ice loss from the world’s glaciers and ice sheets contributes to sea level rise, influences ocean circulation, and affects ecosystem productivity. Ongoing changes in glaciers and ice sheets are driven by submarine melting and iceberg calving from tidewater glacier margins. However, predictions of glacier change largely rest on unconstrained theory for submarine melting. Here, we use repeat multibeam sonar surveys to image a subsurface tidewater glacier face and document a time-variable, three-dimensional geometry linked to melting and calving patterns. Submarine melt rates are high across the entire ice face over both seasons surveyed and increase from spring to summer. The observed melt rates are up to two orders of magnitude greater than predicted by theory, challenging current simulations of ice loss from tidewater glaciers.
    • Subseasonal changes observed in subglacial channel pressure, size, and sediment transport

      Gimbert, Florent; Tsai, Victor C.; Amundson, Jason M.; Bartholomaus, Timothy, C.; Walter, Jacob I. (American Geophysical Union, 2016-04-07)
      Water that pressurizes the base of glaciers and ice sheets enhances glacier velocities and modulates glacial erosion. Predicting ice flow and erosion therefore requires knowledge of subglacial channel evolution, which remains observationally limited. Here we demonstrate that detailed analysis of seismic ground motion caused by subglacial water flow at Mendenhall Glacier (Alaska) allows for continuous measurement of daily to subseasonal changes in basal water pressure gradient, channel size, and sediment transport. We observe intermittent subglacial water pressure gradient changes during the melt season, at odds with common assumptions of slowly varying, low-pressure channels. These observations indicate that changes in channel size do not keep pace with changes in discharge. This behavior strongly affects glacier dynamics and subglacial channel erosion at Mendenhall Glacier, where episodic periods of high water pressure gradients enhance glacier surface velocity and channel sediment transport by up to 30% and 50%, respectively. We expect the application of this framework to future seismic observations acquired at glaciers worldwide to improve our understanding of subglacial processes.
    • A mass-flux perspective of the tidewater glacier cycle

      Amundson, Jason M. (International Glaciological Society, 2016-04-06)
      I explore the tidewater glacier cycle with a 1-D, depth- and width-integrated flow model that includes a mass-flux calving parameterization. The parameterization is developed from mass continuity arguments and relates the calving rate to the terminus velocity and the terminus balance velocity. The model demonstrates variable sensitivity to climate. From an advanced, stable configuration, a small warming of the climate triggers a rapid retreat that causes large-scale drawdown and is enhanced by positive glacier-dynamic feedbacks. Eventually, the terminus retreats out of deep water and the terminus velocity decreases, resulting in reduced drawdown and the potential for restabilization. Terminus readvance can be initiated by cooling the climate. Terminus advance into deep water is difficult to sustain, however, due to negative feedbacks between glacier dynamics and surface mass balance. Despite uncertainty in the precise form of the parameterization, the model provides a simple explanation of the tidewater glacier cycle and can be used to evaluate the response of tidewater glaciers to climate variability. It also highlights the importance of improving parameterizations of calving rates and of incorporating sediment dynamics into tidewater glacier models.