• Bibliography of Publications

      Straley, Janice M. (University of Alaska Southeast, 2016)
    • Depredating sperm whales in the Gulf of Alaska: local habitat use and long distance movements across putative population boundaries

      Straley, Janice M.; Schorr, G. S.; Thode, A. M.; Calambokidis, J.; Lunsford, C. R.; Chenoweth, Ellen M.; O'Connell, V. M.; Andrews, R. D. (Inter-Research Science Publisher, 2014-05-08)
      Satellite tags were attached to 10 sperm whales Physeter macrocephalus (1 whale was tagged in 2 different years) to determine the movements of sperm whales involved in removal of sablefish from longline fishing gear in the Gulf of Alaska (GOA). Tags transmitted from 3 to 34 d (median = 22) in 2007 and 7 to 158 d (median = 45) in 2009. Seven whales stayed in the GOA; all were associating with fishing vessels along the slope. Two whales headed south in June shortly after being tagged; one reached the inner third of the Sea of Cortez; the other’s last location was offshore Mexico at 14°N. A third whale stayed in the GOA until October and then headed south, reaching central Baja, Mexico, 158 d after tagging. The whales that travelled to lower latitudes followed no pattern in timing of departure, and at least 2 had different destinations. All whales passed through the California Current without stopping and did not travel to Hawaii; both are areas with known concentrations of sperm whales. Whales travelled faster when south of 56°N than when foraging in the GOA (median rate of median horizontal movement = 5.4 [range: 4.1 to 5.5] and 1.3 [range: 0.6 to 2.5] km h−1, respectively). Tagged sperm whales primarily travelled over the slope, but one spent considerable time over the ocean basin. Information on the timing and movement patterns of sperm whales may provide a means for fishermen to avoid fishing at whale hot spots, potentially reducing interactions between whales and fishermen.
    • Ecosystem response persists after a prolonged marine heat wave

      Suryan, R. M.; Arimitsu, M. L.; Coletti, H. A.; Hopcroft, R. R.; Zador, S. G.; Lindeberg, M. R.; Straley, Janice M. (Nature Research, 2021-03-18)
      Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.
    • Local recruitment of humpback whales in Glacier Bay and Icy Strait, Alaska, over 30 years

      Pierszalowski, Sophie P.; Gabriele, Christine M.; Steel, Debbie J.; Neilson, Janet L.; Vanselow, Phoebe B. S.; Cedarleaf, Jennifer A.; Straley, Janice M.; Baker, C. Scott (2016-03-15)
      We provide new information on the scale at which fidelity and recruitment underlie observed increases in humpback whale Megaptera novaeangliae populations. We used photoidentification records and DNA profiles from whales in Glacier Bay and Icy Strait (GBIS), southeastern Alaska (SEAK) to investigate 3 sources of population increase over 33 yr (1973−2005): local GBIS recruitment, recruitment from elsewhere in SEAK, and immigration from outside SEAK. We defined 2 temporal strata for these longitudinal records: ‘founder’ individuals identified from 1973 to 1985 (n = 74; n = 46 with DNA profiles) and ‘contemporary’ individuals identified from 2004 to 2005 (n = 171; n = 118 with DNA profiles). To distinguish between local recruitment and recruitment from elsewhere in SEAK, we estimated the proportion of the contemporary stratum that was either a returning founder or descended from a founder female. After excluding 42 contemporary whales without a known mother or genotype to infer maternity, 73.6% of the contemporary stratum was confirmed or inferred through parentage analysis to be either a returning founder or a descendant of a founder mother. Of the 25 females with genotypes in the founder stratum, 24 (96%) were either represented in the contemporary stratum, had at least 1 descendant in the contemporary stratum, or both. We found no significant differences in microsatellite allele or mtDNA frequencies between the strata, suggesting little or no immigration from other feeding grounds. Our results highlight the importance of local habitat protection for a recovering species with culturally inherited migratory destinations.
    • Pectoral herding: an innovative tactic for humpback whale foraging

      Kosma, Madison, M.; Werth, Alexander J.; Szabo, Andrew R.; Straley, Janice M. (The Royal Society, 2019-09-23)
      Humpback whales (Megaptera novaeangliae) have exceptionally long pectorals (i.e. flippers) that aid in shallow water navigation, rapid acceleration and increased manoeuvrability. The use of pectorals to herd or manipulate prey has been hypothesized since the 1930s. We combined new technology and a unique viewing platform to document the additional use of pectorals to aggregate prey during foraging events. Here, we provide a description of ‘pectoral herding’ and explore the conditions that may promote this innovative foraging behaviour. Specifically, we analysed aerial videos and photographic sequences to assess the function of pectorals during feeding events near salmon hatchery release sites in Southeast Alaska (2016–2018). We observed the use of solo bubble-nets to initially corral prey, followed by calculated movements to establish a secondary boundary with the pectorals—further condensing prey and increasing foraging efficiency. We found three ways in which humpback whales use pectorals to herd prey: (i) create a physical barrier to prevent evasion, (ii) cause water motion to guide prey towards the mouth, and (iii) position the ventral side to reflect light and alter prey movement. Our findings suggest that behavioural plasticity may aid foraging in changing environments and shifts in prey availability. Further study would clarify if ‘pectoral herding’ is used as a principal foraging tool by the broader humpback whale population and the conditions that promote its use.
    • Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska

      Straley, Janice M.; Moran, John M.; Boswell, Kevin M.; Vollenweider, Johanna J.; Heintz, Ron A.; Quinn II, Terrance J.; Witteveen, Brianna Harmony; Rice, Stanley D.; Moran, J. R. (2018-01)
      This study addressed the lack of recovery of Pacific herring (Clupea pallasii) in Prince William Sound, Alaska, in relation to humpback whale (Megaptera novaeangliae) predation. As humpback whales rebound from commercial whaling, their ability to influence their prey through top-down forcing increases. We compared the potential influence of foraging humpback whales on three herring populations in the coastal Gulf of Alaska: Prince William Sound, Lynn Canal, and Sitka Sound (133–147°W; 57–61°N) from 2007 to 2009. Information on whale distribution, abundance, diet and the availability of herring as potential prey were used to correlate populations of overwintering herring and humpback whales. In Prince William Sound, the presence of whales coincided with the peak of herring abundance, allowing whales to maximize the consumption of overwintering herring prior to their southern migration. In Lynn Canal and Sitka Sound peak attendance of whales occurred earlier, in the fall, before the herring had completely moved into the areas, hence, there was less opportunity for predation to influence herring populations. North Pacific humpback whales in the Gulf of Alaska may be experiencing nutritional stress from reaching or exceeding carrying capacity, or oceanic conditions may have changed sufficiently to alter the prey base. Intraspecific competition for food may make it harder for humpback whales to meet their annual energetic needs. To meet their energetic demands whales may need to lengthen their time feeding in the northern latitudes or by skipping the annual migration altogether. If humpback whales extended their time feeding in Alaskan waters during the winter months, the result would likely be an increase in herring predation
    • Summary of Reported Whale-Vessel Collisions in Alaskan Waters

      Neilson, Janet L.; Gabriele, Christine M.; Jensen, Aleria S.; Jackson, Kaili; Straley, Janice M. (Hindawi Publishing Corporation, 2012-03-26)
      Here we summarize 108 reported whale-vessel collisions in Alaska from 1978–2011, of which 25 are known to have resulted in the whale's death. We found 89 definite and 19 possible/probable strikes based on standard criteria we created for this study. Most strikes involved humpback whales (86%) with six other species documented. Small vessel strikes were most common (<15 m, 60%), but medium (15–79 m, 27%) and large (≥80 m, 13%) vessels also struck whales. Among the 25 mortalities, vessel length was known in seven cases (190–294 m) and vessel speed was known in three cases (12–19 kn). In 36 cases, human injury or property damage resulted from the collision, and at least 15 people were thrown into the water. In 15 cases humpback whales struck anchored or drifting vessels, suggesting the whales did not detect the vessels. Documenting collisions in Alaska will remain challenging due to remoteness and resource limitations. For a better understanding of the factors contributing to lethal collisions, we recommend (1) systematic documentation of collisions, including vessel size and speed; (2) greater efforts to necropsy stranded whales; (3) using experienced teams focused on determining cause of death; (4) using standard criteria for validating collision reports, such as those presented in this paper.
    • Using line acceleration to measure false killer whale (Pseudorca crassidens) click and whistle source levels during pelagic longline depredation

      Wild, Lauren; Straley, Janice M.; Barnes, Dustin; Bayless, Ali; O'Connell, Victoria; Oleson, Erin; Sarkar, Jit; Behnken, Linda; Falvey, Dan; Martin, Sean; et al. (Acoustical Society of America, 2016-11-22)
      False killer whales (Pseudorca crassidens) depredate pelagic longlines in offshore Hawaiian waters. On January 28, 2015 a depredation event was recorded 14m from an integrated GoPro camera, hydrophone, and accelerometer, revealing that false killer whales depredate bait and generate clicks and whistles under good visibility conditions. The act of plucking bait off a hook generated a distinctive 15 Hz line vibration. Two similar line vibrations detected at earlier times permitted the animal’s range and thus signal source levels to be estimated over a 25-min window. Peak power spectral density source levels for whistles (4–8 kHz) were estimated to be between 115 and 130 dB re 1 lPa2/Hz @ 1 m. Echolocation click source levels over 17–32 kHz bandwidth reached 205 dB re 1lPa @ 1 m pk-pk, or 190 dB re 1lPa @ 1 m (root-meansquare). Predicted detection ranges of the most intense whistles are 10 to 25 km at respective sea states of 4 and 1, with click detection ranges being 5 times smaller than whistles. These detection range analyses provide insight into how passive acoustic monitoring might be used to both quantify and avoid depredation encounters.
    • Using movements, genetics and trophic ecology to differentiate inshore from offshore aggregations of humpback whales in the Gulf of Alaska

      Witteveen, Briana Harmony; Straley, Janice M.; Chenoweth, Ellen M.; Baker, C. Scott; Barlow, Jay; Matkin, Craig O.; Gabriele, Christine M.; Neilson, Janet L.; Steel, Debbie J.; von Ziegesar, Olga; et al. (Inter-Research Science Publisher, 2011-09-23)
      Humpback whales Megaptera novaeangliae have been studied in the coastal waters of the Gulf of Alaska (GOA) since the late 1960s, but information about whales foraging offshore is limited. A large-scale collaborative project (SPLASH) provided opportunities to study humpback whales in both inshore and offshore habitats. Using identification photographs and biopsy samples, we explored individual movements, the distribution of mitochondrial (mtDNA) haplotypes, and trophic levels for humpback whales within 3 regions (Kodiak, KOD; Prince William Sound, PWS; and southeastern Alaska, SEAK) of the GOA to determine whether inshore and offshore aggregations of humpback whales are distinct. Each region was divided into inshore and offshore habitats, creating 6 subregions for comparison. Results documenting 2136 individual whales showed that movement within the study area was most frequent between inshore and offshore subregions within a region. In general, movement between regions was minimal. Tissue samples of 483 humpback whales included 15 mtDNA haplotypes. Pairwise chi-squared tests showed haplotype differences between subregions, but inshore PWS was the only subregion with a haplotype composition significantly different than all other subregions. Trophic levels, as inferred from stable nitrogen isotope ratios, were significantly different among subregions, ranging from 3.4 to 4.5. Pairwise comparisons showed that inshore PWS was again the only subregion that significantly differed from all others. Results suggest that the combined inshore and offshore habitats for KOD and the inshore and offshore habitats for SEAK should each be considered as single regional feeding aggregations, while inshore PWS may represent a separate aggregation from PWS offshore.