• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Carbon sources and trophic connectivity in seafloor food webs in the Alaska Arctic and sub-Arctic

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Oxtoby_uaf_0006E_10474.pdf
    Size:
    28.66Mb
    Format:
    PDF
    Download
    Author
    Oxtoby, Laura Elizabeth
    Chair
    Wooller, Matthew
    Committee
    O'Brien, Diane
    Iken, Katrin
    Horstmann, Larissa
    Budge, Suzanne
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6635
    Abstract
    Stable isotope analysis offers critical insight into organic matter pathways that sustain and link consumers in a food web. Indirect examination of organic matter sources and consumer diets using stable isotope analysis is especially valuable in the Alaska Arctic and sub-Arctic marine realm, where organisms of interest are difficult to observe given their remote habitat and elusive behavior. The research objective of this body of work was to use novel applications of stable isotope analysis to extend our understanding of organic matter sources, trophic pathways, and resource competition among benthic consumers. Microphytobenthos, a community of photosynthesizing unicellular microscopic algal cells on the seafloor sediment, has not been included in stable isotope food web models in the Alaska Arctic and sub-Arctic due to challenges associated with sample collection and analysis. I constrained the isotopic composition of this potential algal source by integrating field measurements, physiological relationships previously established by laboratory studies, and a range of algal growth rates specific to high latitude primary production. Relative to other sources of primary production in the Arctic, sub-Arctic, and lower latitude ecosystems, estimates for stable carbon isotope values of total organic carbon from microphytobenthos in the Beaufort and Chukchi seas were higher than those for Arctic riverine organic matter, but lower than ice algal sources and microphytobenthos measurements from lower latitudes. To further elucidate trophic pathways and resource partitioning among benthic invertebrate consumers, I combined compound-specific stable isotope analysis, a relatively new analytical tool, with fatty acid analysis to estimate proportional contributions of algal sources from ice, open ocean, and surface sediments to common polychaete and bivalve consumers in the Bering Sea. Benthic invertebrates were collected in 2009-2010 and represented a diverse range of feeding strategies, including the suspension/surface deposit-feeding bivalves Macoma calcarea and Ennucula tenuis, the subsurface deposit-feeding bivalve, Nuculana radiata, the head down deposit-feeding polychaete Leitoscoloplos pugettensis, and the predator/scavenger Nephtys spp. Differences in dominant algal sources to these invertebrate consumers corresponded, for the most part, to feeding strategy. Bivalves primarily obtained fatty acids from surface sediments, whereas L. pugettensis obtained fatty acids from a microbially altered phytodetrital fatty acid pool, and Nephtys spp. from ice algal fatty acids acquired indirectly through predation. This multi-proxy compound-specific stable isotope approach was then applied to examine dietary overlap between Pacific walruses (Odobenus rosmarus divergens) and bearded seals (Erignathus barbatus) in 2009-2011 who feed primarily on benthic invertebrate prey. Differences in the relative proportions of fatty acids produced exclusively by benthic prey (non-methylene interrupted fatty acids) indicated that walruses and bearded seals had divergent diets. Proportional contributions of algal sources from ice, open ocean, and surface sediments to the prey consumed by walruses and bearded seals also varied. Walruses consumed prey that relied primarily on benthic and pelagic carbon sources (i.e., suspension/surface and subsurface deposit-feeding bivalves). In contrast, bearded seals consumed prey that relied on benthic and ice algal carbon sources (i.e., omnivorous and predatory benthic invertebrates). In conclusion, this research revealed that, in the recent study years, benthic food webs in the Alaska Arctic and sub-Arctic contained several trophic pathways linking consumers to distinct organic matter sources. Consequently, projected changes in algal production with future climate warming may elicit species-specific responses among benthic organisms.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2016
    Date
    2016-05
    Type
    Dissertation
    Collections
    Marine Biology

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.