• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Arctic circulation pathways, heat and freshwater fluxes: results from numerical model integrations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Whitefield_uaf_0006N_10478.pdf
    Size:
    9.825Mb
    Format:
    PDF
    Download
    Author
    Whitefield, Jonathan David
    Chair
    Winsor, Peter
    Committee
    Hoperoft, Russ
    Weingartner, Thomas
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6653
    Abstract
    With increasing attention on Arctic warming and consequent reductions of sea ice, many studies are focusing on the “gateways” to the Arctic Ocean - the regions where water enters and exits the Arctic Basin. The Chukchi Sea is the only pathway for Pacific water to enter the Arctic Ocean. While the Chukchi naturally undergoes large seasonal and interannual variability, currently it is also undergoing larger and rapid changes, which include transition to a longer icefree season. Numerical models are often used to explore this region, due to observational restrictions associated with sea-ice. Most past and current models tend to represent riverine inputs in a non-realistic manner; adding freshwater on or past the shelf break, not accounting for seasonality of the river discharge, and omitting riverine heat content. In addition, in many of these models, buoyant coastal currents are not well resolved. Here, I present a new river discharge and river temperature data set (at 1/6° resolution). Employing this new data set within a high-resolution pan-Arctic model, freshwater content on the Arctic shelves increased by ~3600 km3 and summer heat fluxes increased by 8 TW (compared to previous models), resulting in a reduction of the Arctic-wide September sea ice extent by up to ~10%. With both the improved riverine forcing included in the model calculations, and the model’s ability to resolve the Alaskan Coastal Current, the model suggests an additional 0.25 Sv of flow to the long-term Bering Strait volume transport. This translates to a 64% increase in the heat transport and a 32% increase in freshwater transport (including 4% from sea ice). The model also resolves individual transport pathways in the Chukchi Sea, including that of Bering Sea Water, which could influence species composition and distribution in the eastern Chukchi Sea. Increased computing power and improved observational tools lead to more accurate reproductions of coastal currents and riverine influences in these numerical models. Greater understanding of this near-shore region and its influences is vital to further interpret larger connections between terrestrial and marine ecosystems, as well as Arctic-wide and global oceanic changes.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2016
    Table of Contents
    Introduction -- Chapter 1. A new river discharge and river temperature climatology data set for the pan-Arctic region -- Chapter 2. Modeled flow pathways in the Chukchi Sea -- Summary and Conclusions -- Appendix. Approval of non-committee co-authors for use of material.
    Date
    2016-05
    Type
    Thesis
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.