• Molecular phylogenetics of arvicoline rodents

      Conroy, Christopher John; Cook, Joseph A. (1998)
      The impetus for this dissertation was an interest in geographic variation in Microtus longicaudus with a particular focus on populations in the Alexander Archipelago of southeastern Alaska. To establish a framework for interpreting intraspecific variation in M. longicaudus, I examined the phylogenetics of 28 species of the genus Microtus, including all North American species (Chapters 2 and 4). That study, which corroborates a rapid pulse of diversification noted in the fossil record, necessitated a deeper phylogenetic perspective. Thus, a third objective of the dissertation was to investigate relationships among genera of arvicolines within the framework of other murid rodents. I examined variation in the mitochondrial cytochrome b and ND4 genes using maximum parsimony, distance, and maximum likelihood phylogenetic analyses. Relationships at several taxonomic levels appear intractable due to rapid accumulation and survival of genetic lineages. These rapid radiations were found among species, genera, and possibly subfamilies; however, strong support at these levels for other taxa (e.g., the monophyly of Microtus) suggests these genes have strong phylogenetic signal. Many of the well-supported sister species pairs within Microtus (Chapters 2 and 4) had been previously identified based on morphologic or allozyme work (e.g., M. pennsylvanicus and M. montanus, M. pinetorum and M. quasiater). The sequence data supported a clade of taiga dwelling species in North America and a clade of eastern and central Asian species. The southernmost arvicoline species of Mexico and Guatemala, though previously suggested to be derived from a single ancient invasion, did not appear to be either ancient or monophyletic. Within M. longicaudus, a large east-west phylogeographic break was detected that is equivalent in genetic distance to other sister species pairs in the genus. This break may indicate mid to late-Pleistocene differentiation (Chapter 3) within the genus. At higher latitudes, populations of M. longicaudus exhibited evidence of recent range expansion including absence of correlation between geographic and genetic structure; and pairwise mismatches among DNA sequences with a single peak and few differences.
    • Molecular systematics and biogeography of long-tailed shrews (Insectivora: Sorex) and northern flying squirrels (Rodentia: Glaucomys)

      Demboski, John Richard; Cook, Joseph A. (1999)
      Insight into phylogenetic and biogeographic relationships among several mammalian taxa in western North America was provided with DNA sequences of two mitochondrial genes (cytochrome b and ND4). Members of two species complexes of long-tailed shrews (genus Sorex ) and northern flying squirrels (genus Glaucomys) were examined, and a common theme of responses to past climate change and glacial cycles was evident. Diversification events indicated by the DNA sequences provide new perspectives regarding the deep and shallow history of these taxa. Analysis of seven species of the Sorex cinereus complex (and related species) revealed two major clades within the complex, Northern and Southern. These generally corroborate proposed morphological relationships and correspond to broadly defined habitat affiliations (xeric and mesic), respectively. Within the Northern clade, amphiberingian species represented a monophyletic group suggesting Beringia was a center of endemism. Next, five species of the S. vagrans complex and related species were assessed. Significant molecular variation was revealed that does not correspond to morphological differences within the complex. Two major clades within S. monticolus were observed, a widespread Continental clade (Arizona to Alaska, including S. neomexicanus) and a restricted Coastal clade (Oregon to southeast Alaska, including S. bairdi and S. pacificus). A regional examination of genetic variation in the northern flying squirrel in southeast Alaska was also performed. Results suggested that southern islands in the Alexander Archipelago were the result of recent colonization (founder event). Finally, a comparative phylogeographic analysis of a reduced data set (S. monticolus), a molecular data set for the American Pine Marten, Martes americana, and other published molecular studies were used to reexamine the role of glacial refugia in the biogeography of the north Pacific coast. Previous ideas regarding purported refugia may be overstated and may be the result of limited geographic sampling. This thesis provides new perspectives on processes (e.g., post-glacial colonization) driving mammalian phylogenetic and biogeographic structuring in western North America.