• Ecological effects of invasive European bird cherry (Prunus padus) on salmonid food webs in Anchorage, Alaska streams

      Roon, David A.; Wipfli, Mark; Prakash, Anupma; Wurtz, Tricia (2011-08)
      Invasive species are a concern worldwide as they can displace native species, reduce biodiversity, and disrupt ecological processes. European bird cherry (Prunus padus) (EBC) is an invasive ornamental tree that is rapidly spreading and possibly displacing native trees along streams in parts of urban Alaska. The objectives of this study were to: 1) map the current distribution of EBC along two Anchorage streams, Campbell and Chester creeks, and 2) determine the effects of EBC on selected ecological processes linked to stream salmon food webs. Data from the 2009 and 2010 field seasons showed: EBC was widely distributed along Campbell and Chester creeks; EBC leaf litter in streams broke down rapidly and supported similar shredder communities to native tree species; and EBC foliage supported significantly less terrestrial invertebrate biomass relative to native deciduous tree species, and contributed significantly less terrestrial invertebrate biomass to streams compared to mixed native vegetation, but riparian EBC did not appear to affect the amount of terrestrial invertebrate prey ingested by juvenile coho salmon (Oncorhynchus kisutch). Although ecological processes did not seem to be dramatically affected by EBC presence, lowered prey abundance as measured in this study may have long-term consequences for stream-rearing fishes as EBC continues to spread over time.
    • The use of aerial imagery to map in-stream physical habitat related to summer distribution of juvenile salmonids in a Southcentral Alaskan stream

      Perschbacher, Jeff; Margraf, F. Joseph; Hasbrouck, James; Wipfli, Mark; Prakash, Anupma (2011-12)
      Airborne remote sensing (3-band multispectral imagery) was used to assess in-stream physical habitat related to summer distributions of juvenile salmonids in a Southcentral Alaskan stream. The objectives of this study were to test the accuracy of using remote sensing spectral and spatial classification techniques to map in-stream physical habitat, and test hypotheses of spatial segregation of ranked densities of juvenile chinook salmon Oncorhynchus tschwytscha, coho salmon O. kisutch, and rainbow trout O. mykiss, related to stream order and drainage. To relate habitat measured with remote sensing to fish densities, a supervised classification technique based on spectral signature was used to classify riffles, non-riffles, vegetation, shade, gravel, and eddy drop zones, with a spatial technique used to classify large woody debris. Combining the two classification techniques resulted in an overall user's accuracy of 85%, compared to results from similar studies (11-80%). Densities of juvenile salmonids was found to be significantly different between stream orders, but not between the two major drainages. Habitat data collected along a 500-meter stream reach were used successfully to map in-stream physical habitat for six river-kilometers of a fourth-order streams. The use of relatively inexpensive aerial imagery to classify in-stream physical habitats is cost effective and repeatable for mapping over large areas, and should be considered an effective tool for fisheries and land-use managers.