• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Climate-induced changes in ecological dynamics of the Alaskan boreal forest: a study of fire-permafrost interactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brown_uaf_0006E_10522.pdf
    Size:
    9.176Mb
    Format:
    PDF
    Download
    Author
    Brown, Dana Rachel Nossov
    Chair
    Kielland, Knut
    Jorgenson, M. Torre
    Committee
    Euskirchen, Eugénie
    Romanovsky, Vladimir E.
    Ruess, Roger R.
    Verbyla, David L.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6805
    Abstract
    A warming climate is expected to cause widespread thawing of discontinuous permafrost, and the co-occurrence of wildfire may function to exacerbate this process. Here, I examined the vulnerability of permafrost to degradation from fire disturbance as it varies across different landscapes of the Interior Alaskan boreal forest using a combination of observational, modeling, and remote sensing approaches. Across all landscapes, the severity of burning strongly influenced both post-fire vegetation and permafrost degradation. The thickness of the remaining surface organic layer was a key control on permafrost degradation because its low thermal conductivity limits ground heat flux. Thus, variation in burn severity controlled the local distribution of near-surface permafrost. Mineral soil texture and permafrost ice content interacted with climate to influence the response of permafrost to fire. Permafrost was vulnerable to deep thawing after fire in coarse-textured or rocky soils throughout the region; low ice content likely enabled this rapid thawing. After thawing, increased drainage in coarse-textured soils caused reductions in surface soil moisture, which contributed to warmer soil temperatures. By contrast, permafrost in fine-textured soils was resilient to fire disturbance in the silty uplands of the Yukon Flats ecoregion, but was highly vulnerable to thawing in the silty lowlands of the Tanana Flats. The resilience of silty upland permafrost was attributed to higher water content of the active layer and the associated high latent heat content of the ice-rich permafrost, coupled with a relatively cold continental climate and sloping topography that removes surface water. In the Tanana Flats, permafrost in silty lowlands thawed after fire despite high water and ice content of soils. This thawing was associated with significant ground surface subsidence, which resulted in water impoundment on the flat terrain, generating a positive feedback to permafrost degradation and wetland expansion. The response of permafrost to fire, and its ecological effects, thus varied spatially due to complex interactions between climate, topography, vegetation, burn severity, soil properties, and hydrology. The sensitivity of permafrost to fire disturbance has also changed over time due to variation in weather at multi-year to multi-decadal time scales. Simulations of soil thermal dynamics showed that increased air temperature, increased snow accumulation, and their interactive effects, have since the 1970s caused permafrost to become more vulnerable to talik formation and deep thawing from fire disturbance. Wildfire coupled with climate change has become an important driver of permafrost loss and ecological change in the northern boreal forest. With continued climate warming, we expect fire disturbance to accelerate permafrost thawing and reduce the likelihood of permafrost recovery. This regime shift is likely to have strong effects on a suite of ecological characteristics of the boreal forest, including surface energy balance, soil moisture, nutrient cycling, vegetation composition, and ecosystem productivity.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2016
    Table of Contents
    Introduction -- Chapter 1: Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests -- Chapter 2: Edaphic and microclimatic controls over permafrost response to fire in interior Alaska -- Chapter 3: Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing -- Conclusions.
    Date
    2016-08
    Type
    Dissertation
    Collections
    Biological Sciences
    Theses supervised by AKCFWRU

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.