Show simple item record

dc.contributor.authorKnowles, Tyler D.
dc.date.accessioned2016-09-12T22:01:56Z
dc.date.available2016-09-12T22:01:56Z
dc.date.issued2016-08
dc.identifier.urihttp://hdl.handle.net/11122/6811
dc.descriptionThesis (M.S.) University of Alaska Fairbanks, 2016en_US
dc.description.abstractWe use the conformal method to investigate solutions of the vacuum Einstein constraint equations on a manifold with a Yamabe-positive metric. To do so, we develop a model problem with symmetric data on Sn⁻¹ x S¹. We specialize the model problem to a two-parameter family of conformal data, and find that no solutions exist when the transverse-traceless tensor is identically zero. When the transverse traceless tensor is nonzero, we observe an existence theorem in both the near-constant mean curvature and far-from-constant mean curvature regimes.en_US
dc.description.tableofcontentsChapter 1: Introduction and Background -- 1.1 Motivation -- 1.2 Overview of Relativity -- 1.3 Geometric Formulation of General Relativity -- 1.4 The Constraint Equations -- 1.5 Conformal Parameterizations -- Chapter 2: Symmetric Data on Sn⁻¹ x S¹ -- Chapter 3: Solutions of the Constraint Equations -- 3.1. Summary of Results -- 3.2. Reduction to Root Finding -- 3.3. Solutions of F(b) = 1 -- 3.3.1. Elementary Estimates for F -- 3.3.2 Proof of Theorem 1 (Near-CMC Results) -- 3.3.3 Proof of Theorem 2 (Existence) -- Chapter 4: Conclusion and Future Work -- References.en_US
dc.language.isoen_USen_US
dc.titleAn existence theorem for solutions to a model problem with Yamabe-positive metric for conformal parameterizations of the Einstein constraint equationsen_US
dc.typeThesisen_US
dc.type.degreemsen_US
dc.identifier.departmentDepartment of Mathematics and Statisticsen_US
dc.contributor.chairMaxwell, David
dc.contributor.committeeRhodes, John A.
dc.contributor.committeeRybkin, Alexei
refterms.dateFOA2020-03-05T13:10:34Z


Files in this item

Thumbnail
Name:
Knowles_uaf_0006N_10546.pdf
Size:
436.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record