• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Alaskan Arctic epibenthic communities: distribution patterns, links to the environment, and brittle star population dynamics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ravelo_uaf_0006E_10563.pdf
    Size:
    16.00Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Thumbnail
    Name:
    Ravelo_sea ice animation_suppl ...
    Size:
    239.1Mb
    Format:
    Unknown
    Download
    Author
    Ravelo, Alexandra Mariela
    Chair
    Konar, Brenda
    Committee
    Bluhm, Bodil
    Mahoney, Andrew
    Winsor, Peter
    Zimmerman, Christian
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6872
    Abstract
    The Arctic marine shelves are characterized by areas of high and low invertebrate standing stock and communities that vary spatially in patches. Large-scale environmental characteristics, such as the distribution of water masses, the fenology of sea ice cover, and variability of water depth define changes in epibenthic community structure throughout the Arctic shelves. The longevity and relatively low mobility of epibenthic invertebrates make them especially relevant as indicators of long-term environmental patterns. In terms of standing stock and biomass, the most representative group among Arctic epibenthic taxa are brittle stars. Large areas of the Arctic shelves have dense assemblages of brittle stars; however, despite their ecological importance for Arctic shelf systems, little is known of their age, growth and turnover rates. The research developed through this dissertation examined how environmental drivers influence epibenthic invertebrate communities of the Alaska Arctic shelves and the population parameters of the dominant brittle star species. The first chapter of my dissertation focused on the northeastern Chukchi Sea and the second one focused on the Alaskan Beaufort Sea. The overarching questions addressed in chapters 1 and 2 focused on characterizing the epibenthic communities of the Alaskan Chukchi and Beaufort seas and defining environmental characteristics that influence the community structure. To answer this question, biological and environmental data were collected and analyzed in 2009 and 2010 in the Chukchi Sea, and in 2011 in the Beaufort Sea. For my third chapter, the overarching question was: what is the predictive power of the seasonality of sea ice for epibenthic community structure in the Alaskan Arctic, and how does it compare to more commonly used environmental descriptors. To test this relationship, six variables depicting the patterns of the seasonality of sea ice were computed from passive microwave sea ice concentration data. For the fourth chapter, the overarching question was, what are the population parameters of the two dominant brittle star species of the Alaskan Arctic. For this analysis, individuals of Ophiura sarsii and Ophiocten sericeum were collected in 2013 for age and organic mass determination. Findings of this research indicate that epibenthic communities have a patchy distribution with one or a few taxa dominating the community over large spatial extents. In both the Chukchi and Beaufort seas, communities were dominated by either crustaceans or echinoderms. Only in the mid-depth stations of the Beaufort Sea were both groups equally abundant. The environmental measure that best correlated to epibenthic commuity structure in both regions was longitude. Biologically relevant variables, such as sediment grain size, sediment phaeopigments, bottom water temperature and salinity, though region specific, were also important drivers of commuity structure. As predictors of epibenthic community structure, sea ice variables resulted in moderate to high correlation values. In the Beaufort Sea, sea ice variables performed better than traditionally used environmental descriptors; however, this was not the case for the Chukchi Sea. This study is the first to report on the age, growth and turnover of Arctic brittle stars. The asymptotic age was higher for O. sarsii than for O. sericeum; however, both species had significantly higher maximum ages than temperate region congeners. The individual production of O. sarsii surpassed that of O. sericeum by an order of magnitude throughout the size spectra. As a whole, this research highlights the complexity of the biological-environmental interactions that create the large spatial variability in community structure, benthic biomass and diversity throughout the Alaska Arctic. The variability in community structure throughout the Chukchi and Beaufort seas was linked qualitatively to large-scale environmental patterns. Quantitatively, these environmental forces were represented by the date of sea ice return and date of sea ice retreat in the Beaufort Sea. The predictive power of sea ice variables was reduced in the Chukchi Sea by the large inter-annual variability in wind direction and intensity that in turn affect the pattern of seasonality of sea ice. As integrators of large-scale environmental patterns, sea ice variables proved useful as additional predictors of epibenthic community structure. The dominant shelf brittle star species do not experience short-term fluctuations in population size. Top-down and bottom-up controls on these populations, such as predation and food supply, may be governing their growth strategy and total annual growth. Considering the longevity and slow growth of many Arctic epibenthic species such as brittle stars, the recovery after disturbance could require decades to restore high biomass in some areas. Environmental changes associated with climate change and resource development in the Arctic shelves have the potential to create large changes in the benthic system, such as local changes epibenthic community composition, dominant taxa, community diversity and benthic biomass hotspots. Future research focusing on the biological interactions that influence epibenthic communities, the supply and success of new recruits to the benthos and the temporal stability of epibenthic communities would help complete our understanding of the spatial and temporal variability of Arctic epibenthic communities and make solid predictions of future scenarios.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2016
    Table of Contents
    General introduction -- CHAPTER 1: Epibenthic community variability in the northeastern Chukchi Sea -- CHAPTER 2: Spatial variability of epibenthic communities on the Alaska Beaufort Shelf -- CHAPTER 3: What lies beneath the ice: relating seasonal sea ice patterns with benthic shelf fauna in the Alaska Arctic -- CHAPTER 4: Growth and production of the brittle stars Ophiura sarsii and Ophiocten sericeum (Echinodermata: Ophiuroidea) in the Alaskan Arctic -- Summary and conclusion.
    Date
    2016-08
    Type
    Dissertation
    Collections
    Marine Biology

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.