• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Atmospheric Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Atmospheric Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Multi-decadal variability of Atlantic water heat transports as seen in the community climate systems model version 3.0

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sterling_K_2006.pdf
    Size:
    39.37Mb
    Format:
    PDF
    Download
    Author
    Sterling, Kara
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6901
    Abstract
    Changes in oceanic heat transports from the North Atlantic to the Arctic, via Atlantic Water (AW), can have widespread impacts upon Arctic climate. Using a multi-century control simulation from the National Center for Atmospheric Research (NCAR) Community Climate Systems Model version 3.0 (CCSM3), the natural multi-decadal variability (MDV) of AW is characterized. Calculations of AW volume fluxes and heat transports into the Arctic are analyzed for the Svinøy transect, Fram Strait, and Barents Sea Opening (BSO), and compared with observations. Warm and cold phases of AW are examined through composite analysis, and quantified with respect to their effects on Arctic climate. The model captures several key features of AW, such as the overall circulation and depth of the AW core, but over-estimates AW temperatures by about 1 ⁰C. AW heat anomalies can be tracked from the Svinøy transect to the Arctic interior with a timescale of 13 years, which is comparable to observations. Composites reveal a deepening (shoaling) of the AW core during warm (cold) periods. Warm (cold) periods are also characterized by greater AW transports through the BSO (Fram Strait), implying the existence of an internal ocean feedback mechanism that helps to regulate oscillations of AW between warm/cold periods.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2006
    Date
    2006-05
    Type
    Thesis
    Collections
    Atmospheric Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.