Show simple item record

dc.contributor.authorBelov, Sergei M.
dc.date.accessioned2016-09-27T22:51:13Z
dc.date.available2016-09-27T22:51:13Z
dc.date.issued2002-12
dc.identifier.urihttp://hdl.handle.net/11122/6910
dc.descriptionThesis (M.S.) University of Alaska Fairbanks, 2002en_US
dc.description.abstractThe present work deals with trace formulas for a half-line Schrödinger operator with long-range potentials. These formulas relate the potential with some scattering data. We generalize some relevant results by Buslaev; Faddeev; Gesztesy, Holden, Simon, and others to the case of square integrable potentials. The relation between the number of the trace formulas and the number of integrable derivatives of the potential is also given.en_US
dc.description.tableofcontentsPreface -- 1. Introduction -- 2. Notation -- 3. The WKB asymptotics -- 4. Some key asymptotics -- 5. The spectral shift function -- 6. Trace formulas -- References.en_US
dc.language.isoen_USen_US
dc.titleThe trace formulas for a half-line Schrodinger operator with long-range potentialsen_US
dc.typeThesisen_US
refterms.dateFOA2020-03-05T13:42:08Z


Files in this item

Thumbnail
Name:
Belov_S_2002.pdf
Size:
40.44Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record