• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A geohydrologic analysis of an upland-bedrock aquifer system: applications to interior Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Youcha_E_2003.pdf
    Size:
    164.8Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Thumbnail
    Name:
    Supplementary_Data_Youcha_E_20 ...
    Size:
    9.733Mb
    Format:
    Unknown
    Download
    Author
    Youcha, Emily K.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/6950
    Abstract
    Ester Dome, an upland-dome bedrock aquifer system, located nearby Fairbanks, Alaska, was studied to identify important geohydrologic processes occurring in Interior upland aquifer systems. The ground-water dynamics at Ester Dome are complex due to the fractured nature of the aquifer system. The geology at Ester Dome consists of metamorphic and igneous rocks. Valley bottom deposits include gravels and loess. The flow pattern of the dome aquifer system is radial. Ground-water flows from a central high elevation recharge area and discharges into lakes, streams, and wetlands in the valley bottoms. The primary form of recharge to the bedrock aquifer is from spring snowmelt. Snow water equivalent and snow depth increases with elevation. Ground-water levels were observed at fifty sites on Ester Dome for two years. Water levels in wells at high elevations or locations with no silt or permafrost coverage show seasonal fluctuations. However, ground-water levels in the valley bottoms show little seasonal fluctuations, except wells that penetrate gravel deposits and have no overburden. A ground-water flow model was developed to aid in the understanding of these geohydrologic processes. The ground-water flow model shows recharge and bedrock hydraulic conductivity as the most sensitive parameters.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2003
    Date
    2003-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.