• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Using SuperDARN to predict polar irregularities that cause GPS scintillation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Simon_M_2016.pdf
    Size:
    28.24Mb
    Format:
    PDF
    Download
    Author
    Simon, Michelle R.
    Chair
    Bristow, William
    Committee
    Hawkins, Joe
    Thorsen, Denise
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7312
    Abstract
    High levels of scintillation caused by strong magnetic storms can cause GPS devices to lose connection with the necessary satellites. Current research has shown a correlation between major magnetic storms and higher levels of the recorded Total Electron Content (TEC) seen in GPS receivers. The research presented in this thesis examines the idea that observations from the Super Dual Auroral Radar Network (SuperDARN) can be used to predict scintillation levels in GPS receivers at polar latitudes by using GPS scintillation values σφ and S4 that were collected from January, 2013 till November, 2015. These values were gathered from Poker Flat, Alaska, and McMurdo Station, Antarctica. Using various graphical methods the GPS data was compared with the recorded velocity, power and spectral width measurements from Kodiak, Alaska, and South Pole, Antarctica, SuperDARN sites. The SuperDARN values were ignored in the comparison if they did not fall within the specified GPS field of view, they were tagged with a ground scatter flag, or the data quality flag indicating they were erroneous. These bar and scatter graphs indicate that many of the irregularities identified by SuperDARN do not cause scintillation of a GPS signal. When the GPS scintillation variables are examined as a function of the SuperDARN signal parameters (power, velocity, and spectral width) only a small dependence is shown, demonstrating little correlation between the GPS scintillation variables and SuperDARN's variables. Based on these results SuperDARN cannot be used to predict higher levels of GPS scintillation in polar latitudes.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2016
    Date
    2016-12
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.