• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The effect of under ice crude oil spills on sympagic biota of the Arctic: a mesocosm approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dilliplaine_K_2017.pdf
    Size:
    6.979Mb
    Format:
    PDF
    Download
    Author
    Dilliplaine, Kyle B.
    Chair
    Gradinger, Rolf
    Bluhm, Bodil
    Committee
    Collins, Eric
    Eicken, Hajo
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7595
    Abstract
    The Arctic marine environment is facing increasing risks of oil spills due to growing maritime activities such as tourism and resource exploration. Encapsulation and migration of spilled oil through the brine channel system in sea ice poses significant risk to ice-associated biological communities. The first objective of this study was to establish mesocosms that allow the growth of artificial sea ice leading to sea ice physical properties similar to young natural sea ice. In addition, the mesocosms should be capable of growing and maintaining a sea ice community. Six sea water tanks with 360 l capacity each were inoculated with biological cultures collected from landfast sea ice near Utqiaġvik AK in April 2014 (year 1) and March 2015 (year 2). The two experiments lasted 24 and 27 days, and final ice thickness reached a mean value of 33 cm. The light conditions under the ice mimicked natural spring irradiances of 15 umol photons m² s⁻¹. Different inoculation approaches for ice biota were used. In year 1 we did not observe any algal growth. In year 2, biological characteristics in the ice prior to oil release (chlorophyll a, Extracellular Polymeric Substance (EPS) concentrations and algal and bacterial abundances) were similar to natural concentrations from early spring first year ice. The second objective was to evaluate the impact of Alaska North Slope crude oil on sea ice biota. Two different oil spill scenarios were tested in the mesocosms: discrete oil lenses and dispersed emulsions. Tanks were sampled prior to oil release and 13 or 10 days post-release in year 1 and year 2, respectively. In year 1, bacterial abundances increased after oil release, while establishment of algal populations was unsuccessful. In year 2, algal growth rates and EPS production increased over time in the control tanks, while they did not change in the oil exposed tanks. Differential response of bacteria and algae between year 1 and 2 not only point to the potential of nutrient competition, but also to the need of measuring several biological properties to detect effects of oil exposure in the event of a spill. Future studies can build upon the developed experimental framework including biological responses to low, sub-lethal oil dosing.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-05
    Type
    Thesis
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.