• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The influence of phenocrysts in silicic magma degassing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    deGraffenried_R_2017.pdf
    Size:
    7.744Mb
    Format:
    PDF
    Download
    Author
    deGraffenried, Rebecca
    Chair
    Larsen, Jessica
    Committee
    Freymueller, Jeffrey
    Izbekov, Pavel
    Keyword
    Magmas
    Phenocrysts
    Volcanic gases
    Volcanic eruptions
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7872
    Abstract
    Understanding the degassing process in magma is an important goal because of the first-order control it exerts on determining eruption style. Degassing in high viscosity magmas is of particular interest since these magmas tend to erupt explosively. However, the role of phenocrysts in the degassing process is still poorly constrained, though recent data indicate that the presence of phenocrysts should promote permeability development at lower porosities than in crystal-free magmas. This study specifically examined the effect of phenocrysts in a rhyolitic magma, but the results can also be applied to crystal-rich intermediate magmas that have rhyolitic matrix melts. Isothermal decompression experiments were conducted using powdered rhyolite (76 wt. % SiO2) and seeded with corundum (Al2O3) crystals to approximate magmas with 20 and 40 vol. % phenocrysts. Experiments were saturated at 900˚C and 110 MPa then continuously decompressed to final pressures between 75 and 15 MPa. Percolation threshold was determined by measuring permeability on a benchtop permeameter and measuring porosity from reflected light images. Additionally, vesicle structure was assessed by measuring pore throat radii from back-scattered electron images and plotting bubble size distributions. Finally, degassing state was checked by measuring dissolved water contents in the glass with Fourier Transform Infrared (FTIR) spectroscopy analyses. The addition of at least 20 vol. % phenocrysts resulted in a decrease in percolation threshold from 70-80 vol. % porosity in crystal-free rhyolites to 55 vol. % porosity. Bubble size distribution patterns indicate that coalescence was more widespread as final pressure decreased and crystal content increased. Minimum pore throat radii in the 40 vol. % phenocryst series were larger than in the 20 vol.% phenocryst and crystal-free series. The dissolved water measurements indicate that these experiments degassed in equilibrium even at the fast decompression rate of 0.25 MPa/s. Calculations of the magnitude of outgassing from the decreased percolation threshold and timescales of pressure dissipation indicate that the presence of phenocrysts plays a role in the effusive-explosive cyclicity of Vulcanian-style eruptions.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-08
    Type
    Thesis
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.