• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Modeling the coseismic and postseismic deformation of the 2002 Mw7.9 Denali, AK earthquake

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Harper_H_2017.pdf
    Size:
    15.16Mb
    Format:
    PDF
    Download
    Author
    Harper, Hugh
    Chair
    Freymueller, Jeffrey T.
    Committee
    Christensen, Douglas
    Holtkamp, Stephen
    Tape, Carl
    Keyword
    Denali Park Earthquake, Alaska, 2002
    Strike-slip faults (Geology)
    Alaska
    Interior Alaska
    Earthquakes
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7878
    Abstract
    The 2002 Mw7.9 Denali fault earthquake was among the largest intraplate earthquakes on record, and the ongoing crustal deformation of the event is still observed today. Understanding the deformation patterns in the years following the earthquake can give insight into the viscoelastic properties of the crust and upper mantle. Additionally, an accurate and predictive model of this deformation is essential to developing and increasingly complete tectonic model of Alaska. Using primarily GPS measurements, deformation can be measured to millimeter-level precision. To develop a coseismic and postseismic model of the earthquake, 224 GPS coseismic displacement measurements (along with SAR and geologic measurements from past studies) are inverted for fault slip distribution. Coseismic slip and consequent stress changes drive the forward postseismic deformation model, which is constrained by 119 postseismic GPS time series. Both models use a 1D elastic structure. The preferred 1D coseismic model fits the coseismic data with a weighted residual sum of squares (WRSS) of 4.86e3 m², with more deep slip than a homogeneous model and a geodetic moment of 8.92e20 N m (Mw 7.97). The Maxwell viscoelastic parameters used for the first postseismic model run are 3e19 Pa s for the lower crust; 5e18 Pa s for the viscoelastic shear zone; and 10e19 and 10e20 south and north of the fault, respectively, for the asthenosphere. The respective Kelvin parameters are all an order of magnitude less. The deep coseismic slip (a product of the 1D elastic model) eliminates the need to add deep slip, which was done in past studies. Based on time series analysis, the decade-plus of data will certainly improve the model prediction relative to previous models, but future observations will be needed to verify this. No preferred postseismic model is developed, and more postseismic models will be run to better fit the observations.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-08
    Type
    Thesis
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.