Electric thermal storage in isolated wind diesel power systems: use of distributed secondary loads for frequency regulation
Author
Janssen, Nicholas T.Chair
Wies, Richard W.Peterson, Rorik A.
Committee
Mueller-Stoffels, MarcXiang, Yujiang
Keyword
Hybrid power systemsArctic regions
Hybrid power
Diesel electric power-plants
Wind power plants
Heat storage devices
Wind power
Metadata
Show full item recordAbstract
Isolated coastal utilities in Arctic villages commonly use a mix of diesel and wind power to provide electrical service to their consumers. It is common for such communities to experience periods of high wind generation for which no immediate demand exists and either waste, curtail, or poorly utilize the surplus. The objective of the present work is to explore (through mathematical and numerical modelling) the technical feasibility of and optimization strategies for distributing this excess wind energy as domestic space heat for use as a cleaner, more economical alternative to fossil fuels. Autonomously controlled Electric Thermal Storage (ETS) devices are considered as a solution to decouple the supply of excess wind power with domestic heat demand without the need for communication infrastructure or a second distribution circuit. First, using numerical heat transfer analysis, it is shown that the performance of an ETS heater core can be generalized and expressed in terms of its physical properties and simple geometric dimensions in such a way as to inform system sizing and economic performance studies for prospective applications. Furthermore, a collection of autonomous ETS units is shown (using a full-scale lab-validated mathematical model) to possess the ability to assume the role of partial and/or sole frequency regulator on a hybrid wind-diesel system. Several design changes are proposed, which render the commercially-available units more amenable to frequency regulation. Ultimately, ETS is shown to be a promising alternative means of utilizing excess renewable energy for domestic space heat while providing additional stability to the electrical grid.Description
Dissertation (Ph.D.) University of Alaska Fairbanks, 2017Table of Contents
Chapter 1 Introduction -- 1.1 Hybrid Wind-Diesel Systems -- 1.2 Frequency Regulation -- 1.3 Voltage Regulation -- 1.4 Energy Storage -- 1.5 Secondary Loads -- 1.6 Electric Thermal Storage -- 1.7 Summary and Organization of Subsequent Chapters -- 1.8 Nomenclature -- 1.9 References -- Chapter 2 Summary of Measurement and Modeling Methodologies -- 2.1 Numerical Heat Transfer - Measurement -- 2.2 Numerical Heat Transfer - Physical Modeling -- 2.3 Electromechanical Dynamics - Measurement -- 2.3.1 Field Measurements -- 2.3.2 Raw Data -- 2.3.3 Post Processing: RMS Values -- 2.3.4 Post Processing: Frequency and Power Factor -- 2.3.5 Post Processing: Impedance, Real Power, and Reactive Power -- 2.4 Electromechanical Dynamics - Modeling -- 2.4.1 Model Structure -- 2.4.2 Equivalent Circuit Simulation Process -- 2.4.3 Solution of Nonlinear Ordinary Differential Equations (ODEs) -- 2.5 References -- Chapter 3 Generalized Heat Flow Model of a Forced Air Electric Thermal Storage Heater Core -- 3.1 Abstract -- 3.2 Introduction -- 3.3 Model -- 3.3.1 Definitions -- 3.3.2 Structure -- 3.3.3 Governing Equations -- 3.3.4 Boundary Conditions -- 3.3.5 Material Properties -- 3.4 Analysis -- 3.4.1 Solution Linearization and Air Velocity Profile -- 3.4.2 Thermal Gradients -- 3.4.3 Parameter Sweep -- 3.5 Results and Discussion -- 3.5.1 One-parameter Model -- 3.5.2 Two-parameter Model -- 3.5.3 Core Energy Balance -- 3.5.4 Stove Modelling -- 3.6 Conclusions -- 3.7 Acknowledgements -- 3.8 Funding -- 3.9 Nomenclature -- 3.10 References -- Chapter 4 Development of a Full-Scale-Lab-Validated Dynamic Simulink© Model for a Stand-Alone -- Wind-Powered Microgrid -- 4.1 Abstract -- 4.2 Introduction -- 4.3 Mathematical Model -- 4.3.1 Diesel Engine/Governor Model -- 4.3.2 Synchronous Generator Model -- 4.3.3 Excitation System Model -- 4.3.4 Induction Generator Model -- 4.4 Data Collection -- 4.5 Results -- 4.5.1 Data Processing -- 4.5.2 Diesel Only (DO) Mode - Laboratory Results -- 4.5.3 Diesel Only (DO) Mode - Simulation Results -- 4.5.4 Wind-Diesel (WD) Mode -- 4.6 Conclusions -- 4.7 Future Work -- 4.8 Acknowledgements -- 4.9 References -- Chapter 5 Frequency Regulation by Distributed Secondary Loads on Islanded Wind-Powered Microgrids -- 5.1 Abstract -- 5.2 Introduction -- 5.3 Mathematical Model -- 5.3.1 Wind-Diesel Hybrid System -- 5.3.2 Individual ETS Units Response -- 5.3.3 Aggregate DSL Response -- 5.4 Analysis -- 5.4.1 Invariant Model Inputs (Machine Parameters) -- 5.4.2 Variable Model Inputs -- 5.4.3 Model Outputs -- 5.5 Results and Discussion -- 5.5.1 Synchronized Switching -- 5.5.2 Staggered Switching -- 5.5.3 Additional Observations and Discussion -- 5.6 Conclusion and Future Work -- 5.7 References -- Chapter 6 Modelling Integration Strategies for Autonomous Distributed Secondary Loads on High Penetration Wind-Diesel Microgrids -- 6.1 Abstract -- 6.2 Introduction -- 6.3 Model -- 6.3.1 System Requirements -- 6.3.2 System Components -- 6.3.3 Control Strategy -- 6.4 Results and Discussion -- 6.4.1 Ramp Simulation -- 6.4.2 Representative Simulation -- 6.4.3 Design Considerations -- 6.5 Conclusions -- 6.6 Acknowledgements -- 6.7 References -- Chapter 7 Results and Observations -- 7.1 Result and Observations of Chapter 3 -- 7.2 Results and Observations of Chapter 4 -- 7.3 Results and Observations of Chapter 5 -- 7.4 Results and Observations of Chapter 6 -- Chapter 8 Conclusions -- 8.1 Conclusions for Generalized Heat Flow Model of a Forced Air Electric Thermal Storage Heater Core -- 8.2 Conclusions for Development of a Full-Scale-Lab-Validated Dynamic Simulink© Model for a Stand-Alone Wind-Powered Microgrid -- 8.3 Conclusions for Frequency Regulation by Distributed Secondary Loads (DSLs) on Islanded Wind-Powered Microgrids -- 8.4 Conclusions for Modeling Integration Strategies for Autonomous Distributed Secondary Loads on High Penetration Wind-Diesel Microgrids -- 8.5 Suggestions for Future Research -- 8.6 Overall Conclusions -- 8.7 Acknowledgements.Date
2017-08Type
DissertationCollections
Related items
Showing items related by title, author, creator and subject.
-
The Extralegal Forum and Legal Power: The Dynamics of the Relationship — Other PipelinesConn, Stephen (Institute of Social, Economic and Government Research, University of Alaska, Fairbanks, 1974-02-26)Diverse groups — e.g., Brazilian squatters, Navajos, village Eskimos and Indians — look to special forums to resolve disputes outside the formal legal system. These forums are employed because they accept disputes as defined by their clients and offer remedies based upon these conceptualizations. Formal agents of the law in their environments cannot do this. When these forums are extralegal (without formal legal authority to act) and are located in an environment where the formal legal process has the theoretical capacity to intervene in the disputes, they must tap into authentic lines of power to maintain their credibility with their constituents. Legal power is not usually formally delegated without defined limits upon its use. Because extralegal forums often must be free from the constraints of particular norms and processes, in order to correctly define and remedy disputes, extralegal forums seek borrowed power through special relationships with formal agents of legal power. Then they reapply it to meet the needs of their constituents. This paper describes the ways to study these relationships and their likely impact upon an informal forum. The author suggests a way of viewing extralegal dispute resolution in a given community against the larger matrix of relationships between the formal and informal legal process. He draws upon his field work in Brazilian squatter colonies, Navajo Indian communities, and rural Athabascan and Eskimo villages in Alaska.
-
Small Scale Modular Nuclear Power: An Option for Alaska?Fay, Ginny; Schwörer, Tobias (Institute of Social and Economic Research, University of Alaska Anchorage, 2011-03-03)Small Modular Reactor (SMR) Economic Screening Analysis SMRs are nuclear power plants smaller than 300 MW. Compat Design, factory-fabricated, scaleable, transportable. Modeling goals: Where in Alaska does currently developed SMR technology make economic sense? How sensitive are outcomes to varying capital and conventional energy costs?
-
Power Cost Equalization Funding Formula ReviewFay, Ginny; Meléndez, Alejandra Villalobos; Schwörer, Tobias (Institute of Social and Economic Research, University of Alaska Anchorage, 2012-03)The purpose of this study is to examine the current Power Cost Equalization (PCE) program formula’s impacts on incentives for implementation of energy efficiency and renewable energy measures. In addition, it examines if alternative formula structures might improve market signals that are more conducive to investment in energy efficiency and renewable energy in rural Alaska. As part of the analysis we also present information on the history of the PCE program and levels and patterns of electricity consumption across regions of Alaska. Alaska has large regional and intra-regional differences in energy consumption and prices that result from a number of factors including proximity to different types and quantities of resources, community population, remoteness, and transportation costs. Most communities in rural Alaska depend on volatile and high priced fossil fuels for the generation of electricity, space heating and transportation. The Alaska statewide weighted average residential rate for electricity (17.6 cents per kWh in CY2011) is substantially higher than the U.S. average of 11.8 cents per kWh (U.S. EIA, 2012). Yet in Alaska the average residential rate per kWh is currently lower than in Hawaii (34.5 cents), New York (18.4 cents) and Connecticut (18.1 cents). Hidden in the Alaska statewide average is considerable variation with some communities paying less than the national average and some—generally those least able to afford it—paying among the highest in the country. The Railbelt and Southeast regions have the lowest average residential electric rates (Appendix I map). North Slope residential customers also have lower average rates because of access to natural gas and North Slope Borough energy payments in addition to PCE disbursements. Most other regions have rates two to three times as high as Alaska urban rates. Some communities with hydroelectric power have notably low rates but customers are not paying the full, true cost of power because the cost of construction was heavily subsidized by state and federal governments. In Table 3 (p. 20) we present average annual residential electricity consumption and rates for different regions of Alaska.