• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    McDermott_M_2017.pdf
    Size:
    13.58Mb
    Format:
    PDF
    Download
    Author
    McDermott, Molly Tankersley
    Chair
    Doak, Pat
    Committee
    Breed, Greg
    Handel, Colleen
    Mulder, Christa
    Keyword
    Arthropod populations
    Alaska
    Seward Peninsula
    Arthropod surveys
    Shrubland ecology
    Shrublands
    Shrubs
    Arthropoda
    Passeriformes
    Food
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7893
    Abstract
    Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity. Key nestling prey items were positively associated with both willow and ericaceous shrubs. Diet composition varied significantly among bird species and spatially within species, however, I found that temporal variability in prey abundance did not have a strong relationship to the probability of consumption. I predict that the wide temporal window of prey availability and high diet diversity may protect these birds against negative impacts from climate-driven shifts in prey phenology and abundance. Taken together, my results suggest that shrub expansion could result in a significant shift in Arctic food-web structure and an increase in food availability for insectivores, although future ecosystem change in the Arctic is likely to be heterogeneous as shrub types are expanding at different rates and in different places across the Arctic.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Table of Contents
    Chapter 1. General introduction -- Chapter 2. Arthropod communities across tundra-shrub ecotones of Northwestern Alaska: implications of continued shrub expansion -- Chapter 3. High diet diversity of Arctic passerine nestlings revealed by next-generation sequencing -- Chapter 4. General conclusion.
    Date
    2017-08
    Type
    Thesis
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.