• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Divergence, gene flow, and the speciation continuum in trans-Beringian birds

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    McLaughlin_J_2017.pdf
    Size:
    4.097Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Thumbnail
    Name:
    McLaughlin_J_2017_Supplemental.zip
    Size:
    49.42Mb
    Format:
    Unknown
    Download
    Author
    McLaughlin, Jessica F.
    Chair
    Winker, Kevin
    Committee
    Takebayashi, Naoki
    Hundertmark, Chris
    Keyword
    Birds
    Speciation
    Russia (Federation)
    Bering Sea Coast
    Alaska
    North Pacific Region
    Genetics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7894
    Abstract
    Understanding the processes of divergence and speciation, particularly in the presence of gene flow, is key to understanding the generation of biodiversity. I investigated divergence and gene flow in nine lineages of birds with a trans-Beringian distribution, including pairs of populations, subspecies, and species, using loci containing ultraconserved elements (UCEs). I found that although these lineages spanned conditions from panmixia to fully biologically isolated species, they were not smoothly distributed across this continuum, but formed two discontinuous groups: relatively shallow splits with gene flow between Asian and North American populations, no fixed SNPs, and lower divergence; and relatively deeply split lineages with multiple fixed SNPs, higher divergence, and relatively low rates of gene flow. All eight lineages in which two populations were distinguishable shared the same divergence model, one with gene flow without a prolonged period of isolation. This was despite the diversity of lineages included that might not have responded in the same ways to the glacial-interglacial cycles of connection and isolation in Beringia. Together, these results highlight the role of gene flow in influencing divergence in these Beringian lineages. Sample size is a critical aspect of study design in population genomics research, yet few empirical studies have examined the impacts of small sample sizes. Using split-migration models optimized with full datasets, I subsampled the datasets from Chapter 1 at sequentially smaller sample sizes from full datasets of 6 - 8 diploid individuals per population and then compared parameter estimates and their variances. Effective population size parameters (ν) tended to be underestimated at low sample sizes (fewer than 3 diploid individuals per population), migration (m) was fairly reliably estimated until under 2 individuals per population, and no trend of over- or underestimation was found in either time since divergence (T) or Θ (4Nrefμ) . Lineages that were split above the population level (subspecies and species pairs) tended to have lower variance at smaller sample sizes than population-level splits, with many parameters reliably estimated at levels as low as 3 diploid individuals per population, whereas shallower splits (i.e., populations) often required at least 5 individuals per population for reliable demographic inferences. Although divergence levels may be unknown at the outset of study design, my results provide a framework for planning appropriate sampling, and for interpreting results if smaller sample sizes must be used.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-08
    Type
    Thesis
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.