• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Dynamic simulator for a grinding circuit

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Srivastava_V_2017.pdf
    Size:
    21.19Mb
    Format:
    PDF
    Download
    Author
    Srivastava, Vaibhav
    Chair
    Ganguli, Rajive
    Ghosh, Tathagata
    Committee
    Akdogan, Guven
    Darrow, Margaret
    Keyword
    Autogenous grinding
    Mathematical models
    Simulation methods
    Milling machinery
    Size reduction of materials
    Equipment and supplies
    Ore-dressing
    Gold ores
    Processing
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7902
    Abstract
    The grinding circuit is a primary and indispensable unit of a mineral processing plant. The product from a grinding circuit affects the recovery rate of minerals in subsequent downstream processes and governs the amount of concentrate produced. Because of the huge amount of energy required during the grinding operation, they contribute to a major portion of the concentrator cost. This makes grinding a crucial process to be considered for optimization and control. There are numerous process variables that are monitored and controlled during a grinding operation. The variables in a grinding circuit are highly inter-related and the intricate interaction among them makes the process difficult to understand from an operational viewpoint. Modeling and simulation of grinding circuits have been used by past researchers for circuit design and pre-flowsheet optimization in terms of processing capacity, recovery rate, and product size distribution. However, these models were solved under steady approximation and did not provide any information on the system in real time. Hence, they cannot be used for real time optimization and control purposes. Therefore, this research focuses on developing a dynamic simulator for a grinding circuit. The Matlab/Simulink environment was used to program the models of the process units that were interlinked to produce the flowsheet of a grinding circuit of a local gold mine operating in Alaska. The flowsheet was simulated under different operating conditions to understand the behavior of the circuit. The explanation for such changes has also been discussed. The dynamic simulator was then used in designing a neural network based controller for the semi-autogenous mill (SAG). A two-layer non-linear autoregressive (NARX) neural network with feed to the mill as exogenous input was designed using data generated by the simulator for a range of operating conditions. Levenberg-Marquardt (LM) and Bayesian Regularization (BR) training algorithms were used to train the network. Comparison of both algorithms showed LM performed better provided the number of parameters in the network were chosen in a prudent manner. Finally, the implementation of the controller for maintaining SAG mill power to a reference point is discussed.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-08
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.