• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Otters, sea stars, and glacial melt: top-down and bottom-up factors that influence kelp communities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Traiger_S_2017.pdf
    Size:
    7.731Mb
    Format:
    PDF
    Download
    Author
    Traiger, Sarah B.
    Chair
    Konar, Brenda
    Committee
    Hardy, Sarah
    Okkonen, Stephen
    Edwards, Matthew
    Litaker, Wayne
    Keyword
    Kelps
    Habitat
    Alaska
    Kelp bed ecology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/7903
    Abstract
    Kelp beds are important features of the Alaska coastline and provide habitat, protect coastlines, and support commercial and subsistence harvests. Kelp beds are affected by top-down and bottom-up factors, which are changing due to human and climate-related impacts. The influences of these top-down and bottom-up factors on kelp beds are investigated in three chapters. My first chapter investigated the influence of glacial discharge on recruitment and early community development in subtidal kelp communities by monitoring benthic sessile algae and invertebrates on cleared rocks across a glacial gradient along with various physical and biological parameters in the summers of 2013-2014. It has been predicted that Alaska's glaciers will lose 30-60% of their volume by 2100. The melt from glaciers increases sedimentation and lowers salinity, impacting important habitat-providing kelp. I found that sites upstream from glacial discharge had higher kelp recruitment than downstream sites, and that up to 72% of the variation in community development was related to mobile invertebrates and kelp in the surrounding community. Glacially-influenced environmental factors did not explain any variation that was not already explained by biological factors. My second chapter explored whether patterns in the recruitment of the dominant canopy kelp, Nereocystis luetkeana and the subcanopy kelp, Saccharina latissima were a result of dispersal limitation or failure to grow to macroscopic size. My goals were to determine 1) whether glacial melt conditions affect adult fecundity (spore production) of either species, 2) how sedimentation affects early gametophyte growth and survival in each species, and 3) whether competitive interaction between species at the gametophyte stage is altered by sediments. I found that glacial melt conditions did not affect the fecundity of either species, but sedimentation affected survival and competition. Saccharina latissima was the superior competitor under high sediment conditions. Because glacially-influenced coastal areas often have little exposed hard substrate and predation by sea otters and sea stars on clams can provide hard substrate for kelp colonization, my third chapter examined methods for determining predation on clams by these predators without direct observation. I found that foraging pits of sea otters and sea stars could not be distinguished using quantitative measurements. In contrast, shell litter proved useful in quantifying relative foraging rates. Clam consumption by sea otters and sea stars was equal at all but one site. Collectively, my thesis chapters provide information on the effects of glacial discharge on microscopic and early kelp life stages in Alaska which can be incorporated into management practices.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2017
    Table of Contents
    General introduction -- Chapter 1: Initial recruitment and early colonization of kelp-associated benthic communities varies in relation to glacial discharge -- Chapter 2: Supply and survival: glacial melt imposes limitations at the kelp microscopic life stage -- Chapter 3: Sea otter versus sea stars as major clam predators: evidence from foraging pits and shell litter -- General conclusion -- Literature cited.
    Date
    2017-08
    Type
    Dissertation
    Collections
    Marine Biology

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.