• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Bayesian methods in glaciology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brinkerhoff_D_2017.pdf
    Size:
    10.03Mb
    Format:
    PDF
    Download
    Author
    Brinkerhoff, Douglas
    Chair
    Truffer, Martin
    Aschwanden, Andy
    Committee
    Tape, Carl
    Bueler, Ed
    Keyword
    Glaciology
    Models
    Hydrologic models
    Mountain hydrology
    Bayesian statistical decision theory
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8113
    Abstract
    The problem of inferring the value of unobservable model parameters given a set of observations is ubiquitous in glaciology, as are large measurement errors. Bayes' theorem provides a unified framework for addressing such problems in a rigorous and robust way through Monte Carlo sampling of posterior distributions, which provides not only the optimal solution for a given inverse problem, but also the uncertainty. We apply these methods to three glaciological problems. First, we use Markov Chain Monte Carlo sampling to infer the importance of different glacier hydrological processes from observations of terminus water flux and surface speed. We find that the opening of sub-glacial cavities due to sliding over asperities at the glacier bed is of a similar magnitude to the opening of channels due to turbulent melt during periods of large input flux, but also that the processes of turbulent melting is the greatest source of uncertainty in hydrological modelling. Storage of water in both englacial void spaces and exchange of water between the englacial and subglacial systems are both necessary to explain observations. We next use Markov Chain Monte Carlo sampling to determine distributed glacier thickness from dense observations of surface velocity and mass balance coupled with sparse direct observations of thickness. These three variables are related through the principle of mass conservation. We develop a new framework for modelling observational uncertainty, then apply the method to three test cases. We find a strong relationship between measurement uncertainty, measurement spacing, and the resulting uncertainty in thickness estimates. We also find that in order to minimize uncertainty, measurement spacing should be 1-2 times the characteristic length scale of variations in subglacial topography. Finally, we apply the method of particle filtering to compute robust estimates of ice surface velocity and uncertainty from oblique time-lapse photos for the rapidly retreating Columbia Glacier. The resulting velocity fields, when averaged over suitable time scales, agree well with velocity measurements derived from satellites. At higher temporal resolution, our results suggest that seasonal evolution of the subglacial drainage system is responsible for observed changes in ice velocity at seasonal scales, and that this changing configuration produces varying degrees of glacier flow sensitivity to changes in external water input.
    Description
    Dissertation (Ph.D) University of Alaska Fairbanks, 2017
    Date
    2017-12
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.