• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Meta-analysis of hydraulic fracture conductivity data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rahman_M_2017.pdf
    Size:
    34.20Mb
    Format:
    PDF
    Download
    Author
    Rahman, Mohammed Rashnur
    Chair
    Awoleke, Obadare O.
    Goddard, Scott
    Committee
    Ahmadi, Mohabbat
    Keyword
    Hydraulic fracturing
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8138
    Abstract
    Previous empirical models of propped fracture conductivity are based either on data sourced from single investigations or on data not in the public domain. In this work, statistically rigorous models of propped fracture conductivity are developed using a database of fracture conductivity experiments reported in technical literature over the last 40 years. The database contains the results from about 2700 experimental runs. Propped fracture conductivity is the dependent variable and proppant types, mesh size, proppant concentration, formation hardness, closure stress, formation temperature, and polymer concentration are the independent variables. The mother database is partitioned into subsets; that is different databases with each daughter database having complete information in relation to the dependent and independent variables. As a result, the number of independent variables included in the daughter databases varied from three to six. Seventy percent of the data was used to develop the models while 30% of the data was used to validate them. First, fixed effect models were developed using regression analysis. Afterwards, three, four and five factor models were compared for two types of proppant: sand and ceramic proppant. The five factor model appeared to be the most prominent one. The analysis was further carried out using five factors of these two types of proppant. Mixed effect modeling was employed because of the disparate sources of the data and also the temporal diversity of the dataset. The mixed effect model appeared to be the better than the fixed effect model while compared the error terms. Also, because the mother database contained some missing values, two statistical imputation approaches were employed to predict the missing values which are categorical imputation and multiple imputation using chained equations. Imputations are employed because it is speculated that a model developed using a large number of data points should provide better predictions. Generally, the mean squared error (MSE) is less in the mixed effect model for sand and in the categorical imputation model for ceramic proppant. But, to be more precise on the performance of the models, model predictions were compared with an existing propped fracture conductivity model and different case histories published in literature. Subsequently, the models of this research can be arranged in order of predictive performance: multiple imputation model, mixed effect model, fixed effect/categorical imputation model. The results also indicate that mesh size, closure stress, formation hardness, and proppant concentration significantly affect fracture conductivity from a statistical point of view. Formation temperature and polymer concentration affect conductivity negatively but they were not statistically significant. Engineers will have access to a propped fracture conductivity database based on experiments reported over the past 40 years in technical literature. Engineers can use the models developed based on this database to generate statistical distributions of propped fracture conductivity for a variety of proppant characteristics and formation conditions. The models presented here are based on data from experimental investigations in different laboratories thereby reducing the bias that may be present in single laboratory investigations.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2017
    Date
    2017-12
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.