• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Two dimensional computational fluid dynamics model of pollutant transport in an open pit mine under Arctic inversion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Collingwood_W_2012.pdf
    Size:
    23.70Mb
    Format:
    PDF
    Download
    Author
    Collingwood, William B.
    Keyword
    Mine ventilation
    Arctic regions
    Cold weather conditions
    Mathematical models
    Mining engineering
    Temperature inversions
    Strip mining
    Air quality management
    Diesel motor exhaust gas
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8442
    Abstract
    A better understanding of the microscale meteorology of deep, open pit mines is important for mineral exploitation in arctic and subarctic regions. During strong temperature inversions in the atmospheric boundary layer--which are common in arctic regions during the winter--the concentrations of gaseous pollutants in open pit mines can reach dangerous levels. In this research, a two dimensional computational fluid dynamics (CFD) model was used to study the atmosphere of an open pit mine. The natural airflow patterns in an open pit mine are strongly dependent on the geometry of the mine. Generally, mechanical turbulence created by the mine topography results in a recirculatory region at the bottom of the mine that is detached from the freestream. The presence of a temperature inversion further inhibits natural ventilation in open pit mines, and the air can quickly become contaminated if a source of pollution is present. Several different exhaust fan configurations were modeled to see if the pollution problem could be mitigated. The two dimensional model suggests that mitigation is possible, but the large quantity of ventilating air required would most likely beimpractical in an industrial setting.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2012
    Table of Contents
    1. Introduction -- 1.1. Scientific rationale -- 1.2. Air inversion -- 1.3. Previous modeling approaches -- 1.4. Solution approaches -- 1.5. Proposed remediation measures -- 1.6. Scope of this research -- 1.7. Work plan -- 2. Data collection -- 3. Model development -- 3.1. Fundamental transport equations -- 3.2. Cell zone and boundary conditions -- 3.3. Meshing -- 3.4. Discretization -- 3.5. TurbulenceModeling -- 3.6. Geometry and mesh creation -- 3.7. Wind flow in open pit mines -- 3.8. Development of an atmospheric inversion -- 4. Pollutant transport in an open pit mine under Arctic air inversion -- 5. Mitigation of pollutants -- 5.1. Helicopter -- 5.2. Exhaust fan: 142 m³/s -- 5.3. Exhaust fan: 556 m³/s -- 5.4. Exhaust fans: multiple fans, multiple sources (142 m³/s) -- 5.5. Exhaust fans: multiple fans, multiple sources (284 m³/s) -- 6. Summary, conclusions, and recommendations for future work -- 6.1. Summary and conclusions -- 6.2. Future work -- 7. References.
    Date
    2012-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.