• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Blasting Bridges And Culverts: Water Overpressure And Vibration Effects On Fish And Habitat

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dunlap_K_2009.pdf
    Size:
    2.670Mb
    Format:
    PDF
    Download
    Author
    Dunlap, Kristen N.
    Chair
    Smoker, William
    Committee
    Timothy, Jackie
    Kelley, John
    Quinn, Terrance II
    Keyword
    Aquatic sciences
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8560
    Abstract
    Water overpressures and ground vibrations from blasting may injure or kill salmonid fish in streams and embryos in streambeds. Explosives are used to remove failing structures in remote areas of the Tongass National Forest that impair watershed function. The State of Alaska Department of Fish and Game standards limit blast induced water overpressures to 2.7 lb/in 2 (18.6 kPa) and streambed vibrations to 0.5 in/s (13 mm/s) when embryos are present. Researchers, however, have reported salmonid mortality from pressures only as low as 12.3 and 19.3 lbs/in2 (85 and 133 kPa) and embryo mortality from vibrations as low as 5.75 in/s (146 mm/s). I recorded in-stream overpressures and streambed vibrations with hydrophones and geophones at various distances from log bridge, log culvert, and metal culvert blasts. Peak water pressures (lb/in2) were directly related to cube-root scaled distances with an attenuation rate of -1.51. Peak particle velocities in gravel were directly related to square-root scaled distances (SRSD, ft/lb 1/2) with an attenuation rate of -0.75. Water pressures were less than 7.1 lb/in2 (49.0 kPa) in all but one blast, and streambed vibrations did not exceed 5.5 in/s in gravel streambeds. State standards should be revised to reflect reported mortality and these observations of blasts in streams.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2009
    Date
    2009
    Type
    Thesis
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.