• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Molecular Mechanisms Of Metabolic Control In The Arctic Ground Squirrel

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Barger_J_2002.pdf
    Size:
    3.825Mb
    Format:
    PDF
    Download
    Author
    Barger, Jamie Louis
    Chair
    Boyer, Bert
    Keyword
    Animal Physiology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8601
    Abstract
    The annual cycle of the arctic ground squirrel (Spermophilus parryii) is characterized by periods of intense energy deposition and utilization, and therefore this species an attractive model for investigating the molecular mechanisms of metabolic control in mammals. In late summer, animals become hyperphagic and undergo intense fattening prior to hibernation. Leptin, a hormone produced by white adipose tissue, reverses obesity in rodent genetic models, but the effects of leptin on outbred rodent strains and wild species is modest. Similarly, administration of mouse recombinant leptin did not affect food intake or adiposity during prehibernation fattening in arctic ground squirrels. These results suggest that either prehibernation fattening is insensitive to negative feedback from leptin or that animals in general lack a negative feedback system controlling adiposity. At the terminus of prehibernation fattening, arctic ground squirrels commence hibernation, during which time nonshivering thermogenesis is invoked to maintain a high body temperature relative to sub-freezing ambient conditions. Thermogenesis occurs primarily by uncoupling oxidative phosphorylation and is catalyzed by mitochondrial membrane transport proteins. I compared the expression patterns of an established and a putative uncoupling protein gene (Ucp1 and Ucp3, respectively) in arctic ground squirrels as a function of temperature, hibernation, or fasting. As expected, levels of brown adipose tissue Ucp1 mRNA and protein were increased by cold exposure and hibernation and decreased by fasting. In contrast, levels of Ucp3 mRNA in skeletal muscle were not increased by cold or hibernation, but were paradoxically increased by fasting. Furthermore, I describe two independent studies that show that increases in the amount of UCP3 do not uncouple oxidative phosphorylation in vitro, suggesting that UCP3 does not mediate thermogenesis in skeletal muscle. Finally, I measured several parameters of mitochondrial bioenergetics in active and hibernating arctic ground squirrels to investigate if the reduced metabolic rate during hibernation is attributable to active suppression of metabolic rate or is instead a secondary consequence of the effects of low body temperature on enzyme kinetics. I show that mitochondrial substrate oxidation is depressed during hibernation, supporting the hypothesis that the reduced metabolic rate during hibernation is a partial consequence of active metabolic depression.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2002
    Date
    2002
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.