• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Crustal Deformation Along The San Andreas Fault And Within The Tibetan Plateau Measured Using Gps

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Chen_Q_2002.pdf
    Size:
    3.601Mb
    Format:
    PDF
    Download
    Author
    Chen, Qizhi
    Chair
    Freymueller, Jeffrey T.
    Keyword
    Geophysics
    Geographic information science and geodesy
    Remote sensing
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8604
    Abstract
    Using the Global Positioning System (GPS), we study crustal deformation along the San Andreas Fault (SAF) in the San Francisco Bay area and within the Tibetan Plateau, and provide new constraints for the kinematics of these actively deforming plate boundaries. GPS measurements in 1996 and 1997 and Electronic Distance Measuring (EDM) data from the 1970s and 1980s at sites along the SAF in northern California were used to determine the near-fault strain rate and to investigate the slip rate, locking depth, and rheology. We found a pronounced high near-fault shear strain rate that can be explained by a 2-D inhomogeneous model in which a low-rigidity compliant zone concentrates strain near the fault. We suggest that the materials on either side of the fault and the cumulative fault offset play a role in the development of the compliant zone. If such a compliant zone is present but unmodeled, the geodetic estimates of slip rate and locking depth (seismogenic depth) would be biased. This would lead to a miscalculated seismic hazard. Thirteen GPS sites in southern Tibet, surveyed in 1995, 1998 and 2000, were merged with other data from China and Nepal into a single, self-consistent velocity field. The Himalaya and southern Tibet was modeled using a kinematically-consistent block model and elastic dislocation theory. We show a significantly lower convergence rate between India and Eurasia in central Himalaya than that previously estimated. We observe that southern Tibet undergoes non-uniform (spatial) east-west extension with one-half of the extension across the Yadong-Gulu rift. We infer that spatially non-uniform extension in southern Tibet results in variation of the arc-normal convergence rates along the Himalaya, and that the Yarlung-Zangbo suture or adjacent structure may be active as a right-lateral strike slip fault. From 44 GPS sites in the Tibetan Plateau, we show that deformation of Tibet is distributed and strain accumulation is spatially uniform across the entire plateau. We propose a kinematic model for the Tibetan Plateau to be a combination of rigid block motion, pure shear and uniaxial contraction in the direction of about N32�E, comparable to the convergence direction between India and Eurasia.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2002
    Date
    2002
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.