• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Neural-Network Modeling Of Placer Ore Grade Spatial Variability

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ke_J_2002.pdf
    Size:
    4.713Mb
    Format:
    PDF
    Download
    Author
    Ke, Jinchuan
    Chair
    Bandopadhyay, Sukumar
    Keyword
    Systems science
    Mining engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8616
    Abstract
    Traditional geostatistical methods have been used in ore reserve estimation for decades. Research in the last two decades or so has added a number of other statistical methodologies for ore reserve estimation procedures. Recent advances in neural networks have provided a new approach to solve this problem. This thesis is focused on the Neural-network modeling for the estimation of placer ore reserve. Due to the spatial variability, multiple dimensional inputs and very noisy drill hole sample data from the selected region, it requires that the neural-network be organized in a multiple-layers to handle the non-linearity and hidden slabs for smoothing the predicted results. Various neural-network architectures are investigated and the Back-propagation is selected for modeling the ore reserve estimation problem. Sensitivity analysis is performed for the following parameters: the type of neural-network architecture, number of hidden layers and hidden neurons, type of activation functions, learning rate and momentum factors, input pattern schedule, weight updated, and so on. The influences of these parameters on the predicted output are analyzed in details and the optimal parameters are determined. To investigate the accuracy and promise of neural network modeling as a tool for ore reserve estimation, the ore grade and tonnage of Neural-network output is compared with those estimated by geostatistical methods under various cut-off grades. In addition, the overall performance is also validated by the analysis of R-squared (R2), Root-Mean-Squared (RMS), and the comparison between predicted values and 'actual' values. As the final part of this study, the optimized Neural Network was used to estimate the distribution of placer gold grade and volume of gold resource in offshore Nome. The predicted results for all the mining blocks in the lease area are validated by checking the values of RMS, R2, and Scatter plots. The estimated gold grades are also presented as contour maps for visualization.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2002
    Date
    2002
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.