Show simple item record

dc.contributor.authorLawler, James Patrick
dc.date.accessioned2018-06-13T21:00:10Z
dc.date.available2018-06-13T21:00:10Z
dc.date.issued2001
dc.identifier.urihttp://hdl.handle.net/11122/8618
dc.descriptionDissertation (Ph.D.) University of Alaska Fairbanks, 2001
dc.description.abstractMany browse species contain anti-herbivory compounds that deter consumers by their toxicity or digestive inhibitory effects. Animals that consume browse are assumed to pay a detoxification energy cost, which increases the heat increment of feeding (HIF). Ruminants also lose potentially metabolizable energy as methane (CH4); but browse may lower CH4 production. I hypothesized that increases in energy loss to HIF by animals eating browse could be offset by a reduction in energy lost via CH4 production. Muskoxen eat both graminoids and browse and are considered to be energetically conservative due to their existence in a sparse arctic environment. These traits make them ideal for energetic studies. Muskoxen were fasted for 24 h and then fed a test meal composed of hay mixed with graded percentages of one of three browse species (Willow: S. alaxensis, S. pulchra, birch: Betula nana). Browse consisted of twigs in winter and leaves in the summer. Heat increment of feeding and CH4 production were estimated with an indirect calorimeter. Muskoxen had a 33% lower metabolic rate in winter in comparison to summer. The main increase in EE from winter to summer occurred between April and May, and the summer to winter decrease between August and September. Addition of woody twigs or leaves of birch to hay diets tended to depress HIF following the test meal. Woody twigs and leaves of willow added to hay diets tended to increase HIF. Woody browse tended to lower CH4 production when fed at >20% of the meal. Leafy browse had variable effects on CH4 production; S. alaxensis was stimulatory, S. pulchra was inhibitory, while B. nana showed not consistent pattern. Generally, CH 4 production by muskoxen was low at 2.0--3.2% of GE intake when compared with estimates for sheep and cattle (2--12% of GE intake). Although diets high in fermentable carbohydrates stimulated methane production, secondary compounds apparently had a suppressing effect as deduced from the relation of in vitro digestibility to methane production. Given the low overall CH4 production in muskoxen, and the inconsistency of the relationship of CH4 to HIF, it is unlikely that significant gains in energy retention are made by reductions in CH4 production through browse consumption.
dc.subjectForestry
dc.subjectAnimal Physiology
dc.titleHeat Increment And Methane Production By Muskoxen Fed Browse
dc.typeDissertation
dc.type.degreephd
dc.identifier.departmentDepartment of Biology and Wildlife
dc.contributor.chairWhite, Robert G.
refterms.dateFOA2020-03-05T16:01:25Z


Files in this item

Thumbnail
Name:
Lawler_J_2001.pdf
Size:
5.007Mb
Format:
PDF

This item appears in the following Collection(s)

  • Biological Sciences
    Includes WIldlife Biology and other Biological Sciences. For Marine Biology see the Marine Sciences collection.

Show simple item record