• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Molecular dynamics simulations to study the effect of fracturing on the efficiency of CH₄ - CO₂ replacement in hydrates

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Akheramka_A_2018.pdf
    Size:
    33.86Mb
    Format:
    PDF
    Download
    Author
    Akheramka, Aditaya O.
    Chair
    Dandekar, Abhijit
    Patil, Shirish
    Committee
    Ahmadi, Mohabbat
    Ismail, Ahmed E.
    Keyword
    Gas fields
    Production methods
    Gas wells
    Hydraulic fracturing
    Natural gas
    Hydrates
    Methane
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8642
    Abstract
    Feasible techniques for long-term methane production from naturally occurring gas hydrates are being explored in both marine and permafrost geological formations around the world. Most of the deposits are found in low-permeability reservoirs and the economic and efficient exploitation of these is an important issue. One of the techniques gaining momentum in recent years is the replacement of CH₄-hydrates with CO₂-hydrates. Studies have been performed, at both laboratory and field based experimental and simulation scale, to evaluate the feasibility of the in situ mass transfer by injecting CO₂ in gaseous, liquid, supercritical and emulsion form. Although thermodynamically feasible, these processes are limited by reaction kinetics and diffusive transport mechanisms. Increasing the permeability and the available surface area can lead to increased heat, mass and pressure transfer across the reservoir. Fracturing technology has been perfected over the years to provide a solution in such low-permeability reservoirs for surface-dependent processes. This work attempts to understand the effects of fracturing technology on the efficiency of this CH₄-CO₂ replacement process. Simulations are performed at the molecular scale to understand the effect of temperature, initial CO₂ concentration and initial surface area on the amount of CH₄ hydrates dissociated. A fully saturated methane hydrate lattice is subjected to a uniaxial tensile loading to validate the elastic mechanical properties and create a fracture opening for CO₂ injection. The Isothermal Young's modulus was found to be very close to literature values and equal to 8.25 GPa at 270 K. Liquid CO₂ molecules were then injected into an artificial fracture cavity, of known surface area, and the system was equilibrated to reach conditions suitable for CH₄ hydrate dissociation and CO₂ hydrate formation. The author finds that as the simulation progresses, CH₄ molecules are released into the cavity and the presence of CO₂ molecules aids in the rapid formation of CH₄ nanobubbles. These nanobubbles formed in the vicinity of the hydrate/liquid interface and not near the mouth of the cavity. The CO₂ molecules were observed to diffuse into the liquid region and were not a part of the nanobubble. Dissolved gas and water molecules are found to accumulate near the mouth of the cavity in all cases, potentially leading to secondary hydrate formation at longer time scales. Temperatures studied in this work did not have a significant effect on the replacement process. Simulations with varying initial CO₂ concentration, keeping the fracture surface area constant, show that the number of methane molecules released is directly proportional to the initial CO₂ concentration. It was also seen that the number of methane molecules released increases with the increase in the initial surface area available for mass transfer. On comparing the positive effect of the two parameters, the initial CO₂ concentration proved to have greater positive impact on the number of methane molecules released as compared to the surface area. These results provide some insight into the mechanism of combining the two recovery techniques. They lay the groundwork for further work exploring the use of fracturing as a primary kick-off technique prior to CO₂ injection for methane production from hydrates.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2018
    Date
    2018-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.