• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Natural Sciences and Mathematics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Natural Sciences and Mathematics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Development of acetylcholine-binding protein (AChBP) as a biosensor for serotonin ligands

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ataian_Y_2018.pdf
    Size:
    10.93Mb
    Format:
    PDF
    Download
    Author
    Ataian, Yeganeh
    Chair
    Schulte, Marvin
    Duffy, Lawrence
    Committee
    Kuhn, Thomas
    Bult-Ito, Abel
    Keyword
    Acetylcholine
    Receptors
    Serotonin
    Agonists
    Antagonists
    Ligand binding (Biochemistry)
    Receptor-ligand complexes
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8644
    Abstract
    Acetylcholine-binding protein (AChBP) is a water-soluble novel protein with a high sequence similarity (15-30% identity) to ligand-gated ion channel (LGIC) receptors. The crystal structure of AChBP is used to study the extracellular domain of the pentameric LGICs such as nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT₃Rs); and homology models have been developed to study receptor-ligand interactions. The 5-HT₃ serotonin receptors are potential therapeutic targets for multiple nervous system disorders such as alcohol and drug dependence, anxiety, depression, schizophrenia, sleep, cognition, memory, and chemotherapy-induced and post-operative nausea and vomiting. Therefore, the ligands that target the 5-HT₃Rs are considered powerful therapeutic agents. As such, 5-HT₃ serotonin receptors have been the targets of drug discovery efforts. The main objective of the current protein engineering project was to develop a soluble serotonin-binding protein using AChBP, which would mimic the specificity of the native 5-HT₃ serotonin receptor. Once developed, this soluble protein would be used as a model to design an array of receptors, which could be placed on biosensors for high-throughput drug screening (HTDS). The results of site-directed mutagenesis of AChBP demonstrated that mutation of certain AChBP residues to its equivalent in serotonin resulted in an increased affinity of AChBP for serotonin ligands, and that each individual mutation increased the affinity of AChBP to a certain degree. It indicates that this approach is going in the right direction but multiple mutations will probably be needed to get to an AChBP whose affinity is equivalent to wild-type serotonin. In addition, the most significant changes appeared to be in the C-loop as it produced the largest increase in affinity of AChBP for serotonin agonists. The results also support the proposed C-loop closure model for the receptor, and based on data presented here, a new alignment of the C-loop is suggested.
    Description
    Thesis (Ph.D.) University of Alaska Fairbanks, 2018
    Date
    2018-05
    Type
    Thesis
    Collections
    College of Natural Sciences and Mathematics
    Theses (Chemistry and Biochemistry)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.