• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The Dynamics And Morphology Of Sprites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Moudry_D_2003.pdf
    Size:
    7.743Mb
    Format:
    PDF
    Download
    Author
    Moudry, Dana
    Chair
    Sentman, Dave
    Keyword
    Physics, Atmospheric Science
    Geophysics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8662
    Abstract
    In 1999 the University of Alaska Fairbanks fielded a 1000 fields-per-second intensified CCD camera to study sprites and associated upper atmospheric phenomena occurring above active thunderstorms as part of the NASA Sprites99 campaign. The exceptional clarity and definition obtained by this camera the night of August 18, 1999, provides the most detailed image record of these phenomena that has been obtained to date. The result of a frame-by-frame analysis of the data permits an orderly classification of upper atmospheric optical phenomena, and is the subject matter of this thesis. The images show that both elves and halos, which are diffuse emissions preceding sprites, are largely spatially unstructured. Observations of sprites initiating outside of main parts of halos, and without a halo, suggest sprites are initiated primarily from locations of atmospheric composition and density inhomogeneities. All sprites appear to start as tendrils descending from approximately 75 km altitude, and may form other dynamic or stationary features. Dynamic features include downward developing tendrils and upward developing branches. Stationary features include beads, columns, and diffuse "puffs," all of which have durations greater than 1 ms. Stationary sprite features are responsible for a significant fraction of the total optical emissions of sprites. Velocities of sprite tendrils were measured. After initial speeds of 106--107 m/s, sprite tendrils may slow to 105 m/s. Similarly, on some occasions the dim optical emission left behind by the descending tendrils may expand horizontally, with speeds on the order of 105 m/s. The volume excited by the sprite tendrils may rebrighten after 30--100 ms in the form of one of three different sprite after effects collectively termed "crawlers." A "smooth crawler" consists of several beads moving upward (~105 m/s) without a large vertical extent, with "smooth" dynamics at 1 ms timescale. "Embers" are bead-like forms which send a downward-propagating luminous structure towards the cloudtop at speeds of 106 m/s, and have irregular dynamics at 1 ms timescales. In TV-rate observations, the downward-propagating structure of an ember is averaged out and appears as a vertically-extended ribbon above the clouds. The third kind of crawler, so-called "palm tree," appears similar to an ember at TV-rates, but with a wider crown at top.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2003
    Date
    2003
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.