• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Permafrost Dynamics In 20Th And 21St Centuries Along The East-Siberian And Alaskan Transects

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sazonova_T_2003.pdf
    Size:
    8.410Mb
    Format:
    PDF
    Download
    Author
    Sazonova, Tatiana Sergeevna
    Chair
    Romanovsky, Vladimir
    Keyword
    Geophysics
    Remote sensing
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8665
    Abstract
    High latitude ecosystems where the mean annual ground surface temperature is around or below 0�C are highly sensitive to global warming. This is largely because these regions contain vast areas of permafrost, which will begin to degrade when the mean annual ground temperatures will rise above 0�C. The Alaskan and East Siberian transects, centered on the 155� WL and 135� EL, were chosen for evaluation of permafrost---atmosphere interactions. The analysis of measured data shows a significant increase in air and ground temperatures that started from the late 1960s within both these transects and the magnitude of this increase is from 0.2 to 0.5�C per decade. This trend is comparable to trends predicted by majority of global warming scenarios. A simple and accurate model for evaluating the permafrost dynamics was developed in Geophysical Institute Permafrost Lab (GIPL). The GIPL model is a fusion of the modified Kudryavtsev's approach, which is a set of analytical formulas for active layer thickness (ALT) and mean annual ground temperature (MAGT) calculations, with the Geographic Information System (GIS). The evaluation of the GIPL performance showed that when applied to long-term (decadal or longer time scale) averages, this model achieves an accuracy of +/-0.2--0.4�C for the mean annual ground temperatures and +0.1--0.3 m for the active layer thickness calculations. The GIPL model was used for the hindcast of the permafrost dynamics in the 20th century, using a combination of observationally-based and simulated monthly grids of surface air temperature. The results showed that during the 20th century there were a number of relatively cold and warm periods. These climatic variations produced 1 to 3�C changes in MAGT and up to 1 m in the ALT. The forecast for the period of 2000--2100 was performed using climatic parameters from six Global Climate Models provided by Arctic Climate Impact Assessment program. The results showed that by the end of 21st century mean annual ground temperatures will be 2 to 6�C warmer and the ALT from 0.2 to 1 m deeper. During this period, in many areas within both transects the degradation of permafrost from the surface will start. By 2100, the area with actively degrading permafrost will cover about 10--15% of the Siberian transect and up to 30% and more within the Alaskan transect.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2003
    Date
    2003
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.