A novel low-cost autonomous 3D LIDAR system

DSpace/Manakin Repository

Show simple item record Dial, Ryker L. 2018-06-25T22:20:08Z 2018-06-25T22:20:08Z 2018-05
dc.description Thesis (M.S.) University of Alaska Fairbanks, 2018 en_US
dc.description.abstract To aid in humanity's efforts to colonize alien worlds, NASA's Robotic Mining Competition pits universities against one another to design autonomous mining robots that can extract the materials necessary for producing oxygen, water, fuel, and infrastructure. To mine autonomously on the uneven terrain, the robot must be able to produce a 3D map of its surroundings and navigate around obstacles. However, sensors that can be used for 3D mapping are typically expensive, have high computational requirements, and/or are designed primarily for indoor use. This thesis describes the creation of a novel low-cost 3D mapping system utilizing a pair of rotating LIDAR sensors, attached to a mobile testing platform. Also, the use of this system for 3D obstacle detection and navigation is shown. Finally, the use of deep learning to improve the scanning efficiency of the sensors is investigated. en_US
dc.description.tableofcontents Chapter 1. Introduction -- 1.1. Purpose -- 1.2. 3D sensors -- 1.2.1. Cameras -- 1.2.2. RGB-D Cameras -- 1.2.3. LIDAR -- 1.3. Overview of Work and Contributions -- 1.4. Multi-LIDAR and Rotating LIDAR Systems -- 1.5. Thesis Organization. Chapter 2. Hardware -- 2.1. Overview -- 2.2. Components -- 2.2.1. Revo Laser Distance Sensor -- 2.2.2. Dynamixel AX-12A Smart Serial Servo -- 2.2.3. Bosch BNO055 Inertial Measurement Unit -- 2.2.4. STM32F767ZI Microcontroller and LIDAR Interface Boards -- 2.2.5. Create 2 Programmable Mobile Robotic Platform -- 2.2.6. Acer C720 Chromebook and Genius Webcam -- 2.3. System Assembly -- 2.3.1. 3D LIDAR Module -- 2.3.2. Full Assembly. Chapter 3. Software -- 3.1. Robot Operating System -- 3.2. Frames of Reference -- 3.3. System Overview -- 3.4. Microcontroller Firmware -- 3.5. PC-Side Point Cloud Fusion -- 3.6. Localization System -- 3.6.1. Fusion of Wheel Odometry and IMU Data -- 3.6.2. ArUco Marker Localization -- 3.6.3. ROS Navigation Stack: Overview & Configuration -- Costmaps -- Path Planners. Chapter 4. System Performance -- 4.1. VS-LIDAR Characteristics -- 4.2. Odometry Tests -- 4.3. Stochastic Scan Dithering -- 4.4. Obstacle Detection Test -- 4.5. Navigation Tests -- 4.6. Detection of Black Obstacles -- 4.7. Performance in Sunlit Environments -- 4.8. Distance Measurement Comparison. Chapter 5. Case Study: Adaptive Scan Dithering -- 5.1. Introduction -- 5.2. Adaptive Scan Dithering Process Overview -- 5.3. Coverage Metrics -- 5.4. Reward Function -- 5.5. Network Configuration -- 5.6. Performance and Remarks. Chapter 6. Conclusions and Future Work -- 6.1. Conclusions -- 6.2. Future Work -- 6.3. Lessons Learned -- References. en_US
dc.language.iso en_US en_US
dc.subject Space mining en_US
dc.subject Robots en_US
dc.subject Automation en_US
dc.subject Autonomous robots en_US
dc.subject Design and construction en_US
dc.subject Mines and mineral resources en_US
dc.subject Optical radar en_US
dc.subject Mining engineering en_US
dc.subject Mining machinery en_US
dc.title A novel low-cost autonomous 3D LIDAR system en_US
dc.type Thesis en_US ms en_US
dc.identifier.department Department of Electrical and Computer Engineering en_US
dc.contributor.chair Bogosyan, Seta
dc.contributor.chair Hatfield, Michael
dc.contributor.committee Lawlor, Orion

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ScholarWorks@UA

Advanced Search


My Account