• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Gulf Of Alaska Pacific Ocean Perch: Stock Assessment, Survey Design And Sampling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hanselman_D_2004.pdf
    Size:
    3.251Mb
    Format:
    PDF
    Download
    Author
    Hanselman, Dana Henry
    Chair
    Terrance J. Quinn, II
    Keyword
    Aquatic sciences
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8775
    Abstract
    Pacific ocean perch (Sebastes alutus) stock size in the Gulf of Alaska has been difficult to assess because of an imprecise survey biomass index. This imprecision has been attributed to low sampling effort on a species with an aggregated distribution. In this thesis, I examined the importance of estimated survey biomass in the stock assessment and ways to improve them. First, I presented the complete stock assessment for 2003, with an analysis of uncertainty. Uncertain parameters included natural mortality, recruitment, and biomass estimates. Second, I examined adaptive cluster sampling (ACS) as a method to reduce survey uncertainty. ACS results provided lower estimates of mean abundance and lower standard errors than did simple random sampling (SRS). Bootstrapping suggested that the ACS mean may be a superior measure of central tendency. ACS results were better than SRS, but not as dramatically as suggested by previous literature. I used simulations to explore why ACS did not perform optimally. These simulations showed that it would be necessary to sample over 10% of the population to obtain large gains in precision. This is impractical for a large marine population. I explored the use of hydroacoustic data recorded on survey vessels to gain precision in biomass estimation. I used the data to (1) develop a catch prediction model based on near-bottom backscatter, (2) simulate an adaptive design, (3) apply ratio estimation in double sampling using hydroacoustic data, and (4) post-stratify survey data. Using hydroacoustic data in these designs showed gains in precision over SRS and may be useful. Finally, I used the S. alutus age structured model presented above to simulate effects of five factors: survey measurement error, catchability trends, a second biomass index, data source weighting, and sensitivity of prior distributions. Simulations showed that the stock assessment model was ineffective at high measurement error and was unable to detect trends in the data. A second biomass index yielded gains in model precision. The weight given lengths measured in the fishery was most important because of its long time series, and the prior distribution on natural mortality was most influential because it was difficult to estimate.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2004
    Date
    2004
    Type
    Dissertation
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.