• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    An Investigation Into Argon-40/Argon-39 Radiogenic Dating And X-Ray Analysis Of Shales And Clays From Northern Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Munly_W_2004.pdf
    Size:
    8.749Mb
    Format:
    PDF
    Download
    Author
    Munly, Walter Campbell
    Chair
    Layer, Paul
    Keyword
    Geology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8783
    Abstract
    In this thesis I develop a new 40Ar/39Ar dating technique for measuring ages and estimating cooling histories of potassium-bearing minerals within shales and clays. To overcome problems of argon recoil, small shale or clay flakes (possessing diameters less than 2 mm) were encapsulated within microampoules under vacuum. Encapsulation ensures that argon that recoils from tiny crystals during irradiation in a nuclear reactor cannot escape and will therefore be detected during 40Ar/39Ar laser step-heating. The step heating method is effective in differentiating between, and dating neoformed and detrital illite components. My use of this method has revealed a significant age difference across the Toyuk thrust, Brooks Range, northern Alaska. Devonian shales from south of the thrust yield relatively flat age spectra indicative of a younger illitic component, and argon retention ages around 225 Ma. Shale samples from north of the thrust yield staircase age spectra indicative of a detrital illite component, and older retention ages (233--391 Ma). Modeling of these spectra across the Toyuk also suggests that argon loss and subsequent cooling occurred at about 140 Ma. Retention ages across the Toyuk thrust may reflect differences in depths of tectonic burial, or differing ages of crystallization of neoformed illite during initial deposition and burial. 40Ar/39Ar age spectra from the Colville basin, North Slope, Alaska, illites are generally dominated by detrital illite, yielding high temperature step-heat ages up to 475 Ma. Illite crystallization ages from the NPRA (National Petroleum Reserve in Alaska) range between 205 and 225 Ma. These ages are older than depositional ages and therefore suggest that this illite was transported from outside the Colville basin, perhaps from the Brooks Range. The Colville basin samples also reveal argon loss at ~45 Ma. Paleocene samples from the Exxon Alaska State A-1 well yield illite crystallization ages of about 205 Ma, and argon loss ages around 40 Ma. X-ray diffraction of the Colville basin samples indicates the presence of multiple clay phases, including detrital and neoformed illite. This complex mineralogy precluded estimating when the host shales were within the oil generation window.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2004
    Date
    2004
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.