• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Building Blocks Of Self -Organized Criticality

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Woodard_R_2004.pdf
    Size:
    3.747Mb
    Format:
    PDF
    Download
    Author
    Woodard, Ryan
    Chair
    Newman, David
    Keyword
    Plasma physics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8789
    Abstract
    Why are we having difficulty developing economical nuclear fusion? How can a squirrel cause a statewide power blackout? How do correlations arise in a random complex system? How are these questions related? This thesis addresses these questions through a study of self-organized criticality (SOC). Among the systems that have been proposed as SOC are confined fusion plasmas, the Earth's magnetosphere and earthquake faults. SOC describes how large-scale complex behavior can emerge from small-scale simple interactions. The essence of SOC is that many dynamical systems, regardless of underlying physics, share a common nonlinear mechanism: local gradients grow until exceeding some critical gradient and then relax in events called avalanches. Avalanches range in size from very small to system-wide. Interactions of many avalanches over long times result in robust statistical and dynamical signatures that are surprisingly similar in many different physical systems. Two of the more well-known signatures are power law scaling of probability distribution functions (PDFs) and power spectra. Of particular interest in the literature for approximately a century are 1/f spectra. I studied the SOC running sandpile model and applied the results to confined and space plasmas. My tools were power spectra, PDFs and rescaled range ( R/S) analysis. I found that SOC systems with random external forcing store memory of previous states in their local gradients and can have dynamical correlations over very long time scales regardless of how weak the external forcing is. At time scales much longer than previously thought, the values of the slope of the power spectra, beta and the Hurst exponent, H, are different from the values found for white noise. As forcing changes, beta changes in the range 0.4 <math> <f> &lap;</f> </math> beta &le; 1 but the Hurst exponent remains relatively constant, H &ap; 0.8. The same physics that produces a 1/f spectrum at strong forcing produces a f -0.4 spectrum at weaker forcing. Small amounts of diffusive spreading added to the two dimensional SOC sandpile greatly decreases the frequency and maximum size of large transport events. More diffusion increases the frequency of large events to values much greater than for systems without diffusion.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2004
    Date
    2004
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.